
COMPUTABLE MODEL THEORY

EKATERINA B. FOKINA, VALENTINA HARIZANOV, AND ALEXANDER MELNIKOV

Contents

1. Introduction and preliminaries. 124
2. Degrees and jump degrees of structures and their isomorphism
types. 129

3. Theories, types, models, and diagrams. 138
4. Small theories and their models. 144
5. Effective categoricity. 148
6. Automorphisms of effective structures. 156
7. Degree spectra of relations. 162
8. Families of relations on a structure. 167
9. Classes of structures and equivalence relations. 173

§1. Introduction and preliminaries. In the past few decades there has been
increasing interest in computable model theory. Computable model theory
uses the tools of computability theory to explore algorithmic content (effec-
tiveness) of notions, theorems, and constructions in various areas of ordinary
mathematics. In algebra this investigation based on intuitive notion of effec-
tiveness dates back to van der Waerden who in his 1930 bookModern Algebra
defined an explicitly given field as one the elements of which are uniquely
represented by distinguishable symbols with which we can perform the field
operations algorithmically. In his pioneering paper [329] on non-factorability
of polynomials from 1930, van der Waerden essentially proved that an explicit
field (F,+, ·) does not necessarily have an algorithm for splitting polynomials
in F [x] into their irreducible factors.
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Hilbert proposed in the early 1920s that the formalization of classicalmathe-
matical theories be based on consistent axiomatic systems,which are complete.
Gödel’s incompleteness theorem from1931 showed thatHilbert’s proposalwas
unattainable for a consistent system with an algorithmic set of axioms, capa-
ble of expressing arithmetic. Gödel’s theorem is an astonishing early result of
computable model theory. He showed that “there are in fact relatively simple
problems in the theory of ordinary whole numbers which cannot be decided
from the axioms.”
In 1936, Turing invented the Turing machine, which marked the beginning
of computability theory. The work of Church, Gödel, Kleene, Markov, Post,
Turing and others in the next decade established the rigorous mathematical
foundations for the computability theory. In the 1950s, a famous problem,
involving the interplay of algebra and computability, the word problem, was
resolved. It was shown independently by Novikov [279] and Boone [28] that
there exists a finitely presented group G such that the word problem for G
is undecidable. Adyan [1] further investigated the undecidability of various
group-theoretic problems. In 1956, Fröhlich and Shepherdson [107] used
the precise notion of a computable function to obtain a collection of results
and examples about explicit rings and fields. For example, Fröhlich and
Shepherdson proved that “there are two explicit fields that are isomorphic
but not explicitly isomorphic.” Several years later, Rabin [288] and Mal’cev
[228, 229] studied more extensively computable groups and other computable
(also called recursive or constructive) algebraic structures, including general
structures. Another spectacular negative solution to a famous problem, which
involves the interplay of number theory and computability, Hilbert’s Tenth
Problem, was completed by Matiyasevich [232] in 1970. Building on work
of Davis, Putnam, and J. Robinson (see [233]), he established that there is
no effective procedure to decide whether a given Diophantine equation has a
solution in integers.
In the 1970s, Metakides and Nerode [239, 240] and other researchers in the
United States (see [157, 26, 259, 289, 290, 296, 291, 245, 313, 225]) initiated
a systematic study of computability in mathematical structures and construc-
tions by using modern computability-theoretic tools, such as the priority
method and various coding techniques. At the same time and independently,
computable model theory was developed in the Siberian school of construc-
tive mathematics (see [283, 280, 195, 120, 121, 122, 87, 124, 123, 284, 88] and
also [92, 93]). While in classical mathematics we can replace some construc-
tions by effective ones, for others such replacement is impossible in principle.
For example, from the point of view of computable model theory, isomorphic
structures may have very different properties.
Several different notions of effectiveness of structures have been investi-
gated. The generalization and formalization of van der Waerden’s intuitive
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notion of an explicitly given field led to the notion of a computable structure,
which is one of the main notions in computable model theory. A structure
is computable if its domain is computable and its relations and functions are
uniformly computable. Further generalization led to a countable structure of
a certain Turing degree d. (Computable structures are of degree 0.) Henkin’s
construction of a model for a complete decidable theory is effective and pro-
duces a structure A with a computable domain such that the elementary
diagram of A is decidable. Such a structure is called decidable. Thus, in
the case of a computable structure, our starting point was semantic, while
in the case of a decidable structure, the starting point was syntactic. It is
easy to see that not every computable structure is decidable since for com-
putable structures only the atomic (open) diagram has to be decidable. We
can also assign Turing degrees or some other computability-theoretic degrees
to isomorphisms, as well as to various relations on structures. We can also
investigate structures, their theories, fragments of diagrams, relations, and
isomorphisms within arithmetic and hyperarithmetic hierarchies.
Computability-theoretic notation in this paper is standard and as in [317].
We review some basic notions and notation. For X ⊆ ù, let ϕX0 , ϕX1 , ϕX2 , . . .
be a fixed effective enumeration of all unary X -computable functions. If X
is computable, we omit the superscript X . For e ∈ ù, let W X

e = dom(ϕ
X
e ).

Hence W0,W1,W2, . . . is an effective enumeration of all computably enu-
merable (c.e.) sets. By X ≤T Y (X ≡T Y , respectively) we denote that X is
Turing reducible toY (X is Turing equivalent toY , respectively). ByX <T Y
we denote that X ≤T Y but Y �T X . We write x = deg(X ) for the Turing
degree ofX . Thus, 0 = deg(∅). Let n ≥ 1. Then x(n) = deg(X (n)), whereX (n)
is the n-th Turing jump of X . A set is Σ0n if it is c.e. relative to 0

(n−1). A set is
Π0n if its negation is Σ

0
n, and a set is ∆

0
n if it is both Σ

0
n and Π

0
n. Let ∆

0
0 =def ∆

0
1.

A setX is arithmetic ifX ≤ ∅(k) for some k ≥ 0. A set X ≤T ∅′ and its Turing
degree x are called low if x′ ≤ 0′, and lown if x(n) ≤ 0(n). The low basis theorem
of Jockusch and Soare [179], establishes that every infinite binary tree T has
an infinite path f with f′ ≤T T ′. In particular, every infinite computable
binary tree has a low path.
An ordinal is computable if it is finite or is the order type of a computable
well order on ù. The computable ordinals form a countable initial segment
of the ordinals. Kleene’s O is the set of notations for computable ordinals,
with the corresponding partial order <O (see [298, 301]). The ordinal 0 gets
notation 1. If a is a notation for α, then 2a is a notation for α + 1. Then
a <O 2a, and also, if b <O a, then b <O 2a . Suppose α is a limit ordinal. If
ϕe is a total function, giving notations for an increasing sequence of ordinals
with limit α, then 3 · 5e is a notation for α. For all n, we have ϕe(n) <O 3 · 5e ,
and if b <O ϕe(n), then b <O 3·5e . Let |a| denote the ordinalwith notationa.
If a ∈ O, then the restriction of <O to the set pred(a) = {b ∈ O : b <O a} is
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a well order of type |a|. For a ∈ O, pred(a) is c.e., uniformly in a. The set O
is Π11-complete.
The least noncomputable ordinal is denoted by ùCK1 , where CK stands for
Church–Kleene. To extend the arithmetic hierarchy, we define the represen-
tative sets in the hyperarithmetic hierarchy, Ha for a ∈ O. The definition
is recursive, and is based on iterating Turing jump: H1 = ∅, H2a = (Ha)′,
and H3·5e = {2x · 3n : x ∈ Hϕe (n)}. Let â be an infinite computable ordinal.
Then a set is Σ0â if it is c.e. relative to some Ha such that â is represented by

notation a. A set is Π0â if its negation is Σ
0
â , and a set is ∆

0
â if it is both Σ

0
â and

Π0â . A set is hyperarithmetic if it is ∆
0
α for some computable α. Hence, a set X

is hyperarithmetic if (∃a ∈ O)[X ≤T Ha ]. The hyperarithmetic sets coincide
with ∆11 sets.
Ershov classified ∆02 sets as follows. Let α be a computable ordinal. A set
C ⊆ ù is α-c.e. if there are: a computable function f: ù2 → {0, 1}; and a
computable function o: ù × ù → α + 1 with the following properties:

(∀x)[f(x, 0) = 0 ∧ lim
s→∞

f(x, s) = C (x)],

(∀x)(∀s)[o(x, 0) = α ∧ o(x, s + 1) ≤ o(x, s)], and
(∀x)(∀s)[f(x, s + 1) 6= f(x, s)⇒ o(x, s + 1) < o(x, s)].

In particular, 1-c.e. sets are c.e. sets, and 2-c.e. sets are d.c.e. sets.
Several important notions of computability on effective structures have
syntactic characterizations, which involve computable infinitary formulas in-
troduced by Ash. Roughly speaking, these are infinitary formulas involving
infinite conjunctions and disjunctions over c.e. sets. More precisely, let α be
a computable ordinal. Ash defined computable Σα and Πα formulas of Lù1ù
recursively and simultaneously and together with their Gödel numbers. The
computable Σ0 and Π0 formulas are the finitary quantifier-free formulas. The
computable Σα+1 formulas are of the form

∨

n∈We
∃ynøn(x, yn),

where for n ∈ We , øn is a Πα formula indexed by its Gödel number, and
∃yn is a finite block of existential quantifiers. That is, Σα+1 formulas are c.e.
disjunctions of ∃Πα formulas. Similarly, Πα+1 formulas are c.e. conjunctions
of ∀Σα formulas. It can be shown that a computable Σ1 formula is of the form

∨

n∈ù
∃ynèn(x, yn),

where (èn(x, yn))n∈ù is a computable sequence of quantifier-free formulas.
If α is a limit ordinal, then Σα (Πα , respectively) formulas are of the form∨
n∈We

øn
( ∧
n∈We

øn, respectively
)
, such that there is a sequence (αn)n∈We of
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ordinals having limit α, given by the ordinal notation for α, and every øn is a
Σαn (Παn , respectively) formula. For a more precise definition of computable
Σα andΠα formulas see [17]. The important property of these formulas, due to
Ash, is the following. For a structure A, if è(x) is a computable Σα formula,
then the set {a : A |= è(a)} is Σ0α relative to A. An analogous property
holds for computable Πα formulas. IfA and B are hyperarithmetic structures
satisfying the same computable infinitary sentences, then A ∼= B (see [140]).
The following is a compactness theorem due to Kreisel and Barwise.

Theorem 1. Let Γ be aΠ11 set of computable infinitary sentences. If every ∆
1
1

subset of Γ has a model, then Γ has a model.

As a corollary we obtain that if Γ is a Π11 set of computable infinitary
sentences, and if every ∆11 subset of Γ has a computable model, then Γ has a
computable model (see [17]).
Complexity of a countable structure A can be measured by its Scott rank.
There are several different definitions of Scott rank and we will use one in [17]
(also see [41]). First we define a family of equivalence relations on finite tuples
a and b of elements in A, of the same length.
1. We say that a ≡0 b if a and b satisfy the same quantifier-free formulas.
2. For α > 0, we say that a ≡α b if for all â < α, for every c, there exists d ,
and for every d , there exists c, such that a, c ≡â b, d .

The Scott rank of a tuple a in A is the least â such that for all b, the relation
a ≡â b implies (A, a) ∼= (A, b). The Scott rank of A, SR(A), is the least
ordinal α greater than the ranks of all tuples inA. For example, if L is a linear
order of type ù, then SR(L) = 2. For a hyperarithmetic structure, the Scott
rank is at most ùCK1 + 1. It can be shown (see [17, 41]) that for a computable
structure A, we have:
(i) SR(A) < ùCK1 if there is a computable ordinal â such that the orbits of
all tuples are defined by computable Πâ formulas;
(ii) SR(A) = ùCK1 if the orbits of all tuples are defined by computable
infinitary formulas, but there is no bound on the complexity of these formulas;
and
(iii) SR(A) = ùCK1 + 1 if there is some tuple the orbit of which is not
defined by any computable infinitary formula.
There are structures in natural classes, for example, abelian p-groups, where
p is a prime number, with arbitrarily large computable ranks, and of rank
ùCK1 + 1, but none of rank ùCK1 (see [25]). Makkai [227] was the first to
prove the existence of an arithmetic structure of Scott rank ùCK1 , and in [210],
J. Millar and Knight showed that such structure can be made computable.
Through the recent work of Calvert, Knight, and J. Millar [42], Calvert, Gon-
charov, and Knight [37], and Freer [104], we started to better understand the
structures of Scott rank ùCK1 . Computable structures of Scott rank ù

CK
1 were
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obtained in familiar classes such as trees, undirected graphs, fields of any fixed
characteristic, and linear orders [42, 37]. Sacks asked whether for known
examples of computable structures of Scott rank ùCK1 , the computable infini-
tary theories are ℵ0-categorical? In [36], Calvert, Goncharov, J. Millar, and
Knight gave an affirmative answer for known examples. In [242], J. Millar and
Sacks introduced an innovative technique that produced a countable structure
A of Scott rank ùCK1 such that ùA

1 = ù
CK
1 and the LùCK1 ,ù -theory of A is not

ℵ0 -categorical. It is not known whether such a structure can be computable.
In this paper, we will not consider structures that are computable with
bounds on the resources that algorithms can use, such as time and memory
constraints. For a survey of polynomial time structures see the paper [48] by
Cenzer andRemmel. Another approach that turned out to be very interesting,
which is beyond the scope of this paper, is to consider functions representable
by various types of finite automata. For instance, a function presented by
a finite string automaton can be computed in linear time using a constant
amount of memory. A seminal paper in this field is [202] by Khoussainov and
Nerode. The most interesting property of automatic structures is that they
have decidable model checking problems. We can use this property to prove
the decidability of the first-order theories of many structures, e.g., Presburger
arithmetic. There is also a class of tree automatic structures (see [300, 200]),
which is richer than the class of automatic structures. Tree automatic struc-
tures have nice algorithmic properties, in particular, decidable model checking
problem. Many interesting problems in this area remain open.

§2. Degrees and jump degrees of structures and their isomorphism types. We
will assume that all structures are at most countable and their languages are
computable. Clearly, finite structures are computable. Let d be a Turing de-
gree. An infinite structureM is d-computable if its universe can be identified
with the set of natural numbers ù in such a way that the relations and op-
erations ofM are uniformly d-computable. For example, we may consider
structures computable in the halting problem, such as Σ01 and Π

0
1 structures.

See Higman [165], Feiner [94], Metakides and Nerode [239], Ershov and
Goncharov [93], and Cenzer, Harizanov, and Remmel [45] for more on Σ01
structures, and Remmel [289], Khoussainov, Slaman, and Semukhin [206],
and Cenzer, Harizanov, and Remmel [45] for more on Π01 structures.
If an algebraic structure is not computable, then it is natural to ask how close
it is to a computable one? This property can be captured by the collection
of all Turing degrees relative to which a given structure has a computable
isomorphic copy. Thus, we have the following definition.

Definition 1. The degree spectrum of a structureA is
DgSp(A) = {deg(D(B)) : B ∼= A},
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where D(B) is the the atomic diagram of B.
Knight proved the following fundamental result about the degree spectrum
of a structure.

Theorem 2 ([209]). The degree spectrum of any structure is either a singleton
or is upward closed.

A structure A is automorphically trivial if there is a finite subset C of its
domain such that every permutation of the domain, which fixes C pointwise,
is an automorphism ofA. Automorphically trivial structures include all finite
structures, of course, and also some infinite structures, such as the complete
graph on countably many vertices. If the structure is automorphically non-
trivial, the degree spectrum is upward closed [209]. The degree spectrum of an
automorphically trivial structure always contains exactly one Turing degree,
and if the language is finite, that degree must be 0 (see [149]). Jockusch and
Richter introduced the following notion.

Definition 2 ([296]). If the degree spectrum of a structure A has a least
element, then this element is called the degree of the isomorphism type of A.
Richter [296, 297] initiated the systematic study of such degrees. Richter
proved that if A is a structure without a computable copy, which satisfies
the effective extendability condition, then the isomorphism type of A has no
degree. A structure A satisfies the effective extendability condition if for every
finite structureM isomorphic to a substructure of A, and every embedding
f of M into A, there is an algorithm that determines whether a given fi-
nite structure F extending M can be embedded into A by an embedding
extending f. Richter showed that every linear order, and every tree, as a par-
tially ordered set, satisfy the effective extendability condition. More recently,
A. Khisamiev [194] proved that every abelian p-group satisfies the effective
extendability condition. Hence the isomorphism type of a countable linear
order, a tree, or an abelian p-group, which is not isomorphic to a computable
one, does not have a degree of its isomorphism type. Richter also showed for
any Turing degree d, there is a torsion abelian group the isomorphism type of
which has the degree d, as well as that there is such a group the isomorphism
type of which does not have a degree. Results of Richter motivated the study
of jump degrees of structures. The following definition was also introduced
by Jockusch and Richter.

Definition 3 ([296]). Let A be a structure, and α a computable ordinal.
We say that a Turing degree d is the αth jump degree ofA if it is the least degree
in

{d(α) : d ∈ DgSp(A)}.
The degree d is said to be proper αth jump degree ofA if for every computable
ordinal â < α, the structure A has no â th jump degree.
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Given a class of structures, we may ask for which computable ordinals α
there exist representatives of this class having (proper) αth jump degrees.
The following theorem summarizes results for linear orders due to Knight
[209], Ash, Jockusch, and Knight [14], and Downey and Knight [77].

Theorem 3 ([209, 14, 77]). If a linear order has first jump degree, it must
be 0′. In contrast, for each computable ordinal α ≥ 2 and every Turing degree
d ≥ 0(α), there exists a linear order having proper αth jump degree d.
Ordinal jump degrees of Boolean algebras are well-understood as well,
but the results differ from the ones for linear orders. Jockusch and Soare
established the following result.

Theorem 4 ([181]). For n ∈ ù, if a Boolean algebra has nth jump degree,
then it is 0(n). In contrast, for each d ≥ 0(ù), there exists a Boolean algebra with
proper ùth jump degree d.

Oates investigated jump degrees of torsion abelian groups.

Theorem 5 ([281]). For every computable α, there is a torsion abelian group
having proper αth jump degree.

The proof relies on algebraic properties of countable abelian p-groups,
which are well-undestood.
The situation becomes more complex in the case of countable, torsion-free,
abelian groups, where there is no suitable algebraic classification theory. Nev-
ertheless, there has been a significant progress in this area. If G = (G,+) is a
torsion-free abelian group, a set of nonzero elements {gi : i ∈ I } ⊂ G is lin-
early independent if α1gi1+ · · ·+αkgik = 0 has no solution for {i1, . . . , ik} ⊆ I ,
αi ∈ Z for each i , and αi 6= 0 for some i . A basis for G is a maximal lin-
early independent set, and the rank of G is the cardinality of a basis. Calvert,
Harizanov, and Schlapentokh obtained the results about Turing degrees of iso-
morphism types for various familiar algebraic classes, including torsion-free
abelian groups of finite rank.

Theorem 6 ([39]). There are algebraic fields and torsion-free abelian groups
of any finite rank > 1, the isomorphism types of which have arbitrary Turing
degrees. There are structures in each of these classes the isomorphism types of
which do not have Turing degrees.

For rank 1, torsion-free, abelian groups the result was previously obtained
by Knight, Downey, and Jockusch (see [81]). Such groups are isomorphic to
subgroups of (Q,+), and there is a known classification for these groups due
to Baer.
Melnikov [238] showed that not every infinite-rank, torsion-free, abelian
group has first jump degree. Results about the existence of proper jump
degrees for torsion-free abelian groupswere resolved byDowney and Jockusch
for the first jump, and by Melnikov for the second and the third jump.
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Theorem 7 ([81, 238]). For n ∈ {1, 2} and every degree d ≥ 0(n), there is a
torsion-free group having proper nth jump degree d. For every degree d > 0′′′,
there is a torsion-free group having proper nth jump degree d.

The case of higher ordinals remained unresolved until the recent work of
Andersen, Kach, Melnikov, and Solomon who obtained the following general
result.

Theorem 8 ([2]). For every computableα > 3, every d > 0(α) can be realized
as a proper αth jump degree of a torsion-free abelian group.

It is not knownwhether the result can be strengthened to d = 0(α) forα > 2.
The groups from Theorem 7 are of the form

⊕
i∈ù Hi , where Hi ≦ (Q,+).

Such groups, introduced by Baer in 1937, are called completely decomposable
and have nice algebraic properties. In the case of only one summand, Coles,
Downey, and Slaman [58] established the following theorem, as a consequence
of their pure computability-theoretic result that for every set C ⊆ ù, there is
a Turing degree that is the least degree of the jumps of all sets X for which C
is c.e. in X .

Theorem 9 ([58]). Every torsion-free abelian group of rank 1 has first jump
degree.

Theorem 9 can be extended to torsion-free abelian groups of any finite rank,
as was observed in [39, 238]. It is not known which ordinals are realized as
proper jump degrees of groups of the form

⊕
i∈ù Hi , whereHi ≦ (Q,+).

For certain classes of countable structures, we can use computable functors
to translate results fromone class of countable structures to another. A functor
Φ: K → K1 is computable if, given an enumeration of an open diagram ofA ∈
K, we can enumerate the open diagram of Φ(A) ∈ K1, in a uniform fashion.
Computable functors are also called effective transformations. Hirschfeldt,
Khoussainov, Shore, and Slinko used injective effective transformations to
transfer various computability-theoretic results from graphs to structures in
other familiar algebraic classes.

Theorem 10 ([174]). For every automorphically nontrivial structureA, there
is a symmetric irreflexive graph, a partial order, a lattice, a ring, an integral do-
main of arbitrary characteristic, a commutative semigroup, or a 2-step nilpotent
group the degree spectrum of which coincides withDgSp(A).
As a consequence we obtain that these classes have structures with proper
αth jump degrees for all computable ordinals α. Frolov, Kalimullin, and
R. Miller [109] investigated degree spectra of algebraic fields.

Theorem 11 ([109]). Every algebraic field has first jump degree.

Not much is known about groups that are far from abelian. There are
centerless groups that have arbitrary Turing degrees for their isomorphism
classes, as well as no degrees [68]. Recently, Calvert, Harizanov, and Shlapen-
tokh [38] started to investigate effective content of geometric objects, such as



COMPUTABLEMODEL THEORY 133

ringed spaces and schemes. In particular, they showed that ringed spaces cor-
responding to unions of varieties, ringed spaces corresponding to unions of
subvarieties of certain fixed varieties, and schemes over a fixed field can have
arbitrary Turing degrees for their isomorphism classes, as well as no degrees.
Lempp asked if there is a nontrivial sufficient condition on a structure,
which will guarantee that its degree spectrum contains 0? Slaman [315]
and Wehner [332] independently obtained the following result, with differ-
ent proofs.

Theorem 12 ([315, 332]). There exists a structure the degree spectrum of
which is the set of all noncomputable Turing degrees.

Wehner [332] constructed a family of sets that yields a structure with iso-
morphic copies in exactly the noncomputable Turing degrees. While Wehner’s
structure is elementarily equivalent to a computable structure, Slaman’s is not.
We will say that a structure such as one in Theorem 12 has Slaman–Wehner
degree spectrum. More recently, Hirschfeldt [171] proved that there is a struc-
ture with Slaman–Wehner degree spectrum, which is a prime model of a
complete decidable theory. This also gives another proof of Theorem 12.
Hirschfeldt’s structure is elementarily equivalent to a decidable structure.
Hirschfeldt’s degree spectrum result follows from his theorem in [171] that
if T is a computable tree with no dead ends and with all infinite paths com-
putable, and D is a noncomputable set, then there is a D-computable listing
of the isolated paths in T . Previously, Goncharov and Nurtazin [142] and
T. Millar [245] established that this result does not hold if D is computable.
Downey asked if there exists a structure in a natural algebraic class of
structures, such as a linear order or an abelian group, which has Slaman–
Wehner spectrum? We can also ask which sets of degrees can be realized
as degree spectra of structures? Since co-null collections of degrees are of a
particular interest, we have the following definition due to Kalimullin.

Definition 4 ([186]). An automorphically nontrivial structureM is called
almost computable if themeasure ofDgSp(M) is equal to 1 under the standard
Lebesgue measure on the Cantor space.

For example, every structure with Slaman–Wehner spectrum is almost com-
putable. More examples have been obtained recently. Kalimullin [187, 188,
189] investigated the relativization of Slaman–Wehner theorem to nonzero de-
grees. He showed that such a relativization holds for every low Turing degree,
as well as every c.e. degree, but not for every ∆03 Turing degree. Using the enu-
meration result of Wehner, also relativized, Goncharov, Harizanov, Knight,
McCoy, R. Miller, and Solomon [116] showed that for every computable suc-
cessor ordinal α, there is a structure with copies in just the degrees of sets X
such that ∆0α(X ) is not ∆

0
α . As a consequence, they obtained the following

result.
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Theorem 13 ([116]). For each finite n, there is a structure with the degree
spectrum consisting of exactly all nonlown Turing degrees.

Consequently, there are almost computable structures without arithmetic
isomorphic copies. Csima and Kalimullin provided another interesting exam-
ple of a possible degree spectrum.

Theorem 14 ([63]). The set of hyperimmune degrees is the degree spectrum
of a structure.

We could ask the following analogue of Lemmp’s question for almost com-
putable structures. If a structure is almost computable, must it contain a
hyperarithmetic or a Π11 degree? Greenberg, Montalbán, and Slaman [144]
and independently Kalimullin and Nies (unpublished) obtained the following
positive result.

Theorem 15 ([144]). IfM is an almost computable structure, then there is
some copy ofM that is computable from Kleene’s O.
This bound cannot be improved to be hyperarithmetic. Recently, Green-
berg, Montalbán, and Slaman [143] constructed a linear order the degree
spectrum of which is the set of all non-hyperarithmetic degrees. There are
other examples of almost computable structures in various natural algebraic
classes and we will discuss some of them.
Although the degree spectra of linear orders have been intensively studied,
the following question remains open. Is there a linear order the degree spec-
trum of which is the set of all nonzero degrees? Jockusch and Soare [180]
established that for every nonzero c.e. Turing degree d, there is a linear order
L of Turing degree d such that L does not have a computable copy. Downey,
Seetapun and Knight extended this result to an arbitrary nonzero Turing de-
gree (see [81]). R. Miller [254] constructed a linear order with the spectrum
containing all nonzero ∆02 degrees but not 0. Recently, Frolov, Harizanov,
Kalimullin, Kudinov, and R. Miller obtained the following examples.

Theorem 16 ([108]). Let n ≥ 2. For every Turing degree c, there is a linear
order with spectrum {d : d(n) > c}. In particular, there is a linear order the
spectrum of which contains exactly the nonlown degrees.

For a survey of related results on linear orders see [108].
Slaman–Wehner’s degree spectrum is not possible when restricted to the
class of countable Boolean algebras. Knight and Stob [212] obtained the
following result about low4 Boolean algebras, extending a result of Downey
and Jockusch [75] for low Boolean algebras, and of Thurber [328] for low2
Boolean algebras.

Theorem 17 ([212]). Every low4 Boolean algebra has a computable isomor-
phic copy.

One of the main open questions in this area is the following. Is every lown,
n ≥ 5, Boolean algebra isomorphic to a computable one? The affirmative
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answer to this question is known as the lown Boolean algebra conjecture.
There is some evidence that if every low5 Boolean algebra has a computable
copy, then the proof of that statement should be different from the proof for
low4 Boolean algebras. This follows from work of Harris and Montalbán in
[161] where they showed that there are over 1000 invariants that have to be
considered for the low5 case, as well as from work of Harris and Montalbán
on the complexity of isomorphisms in [160].
Similarly to linear orders, the following question is open. Is there an
abelian group having Slaman–Wehner degree spectrum? Recently, Khous-
sainov, Kalimullin, and Melnikov proved the following result about abelian
p-groups.

Theorem 18 ([185]). There exists an abelian p-group, which has a d-
computable copy relative to every noncomputable∆02 Turing degree d, but has no
computable copy.

In addition, Khoussainov,Kalimullin, andMelnikov [185] proved that there
exists a noncomputable torsion abelian group the degree spectrum of which
contains all hyperimmune degrees. They also showed that this result cannot
be generalized to co-countable collections of degrees, when restricted to direct
sums of cyclic groups. These results can be re-formulated in terms of effective
monotonic approximations that we will later introduce. It is also known that
there exists a torsion-free abelian group having exactly nonlow isomorphic
copies [238]. Other structures studied in this context come from [174]. There
are also some related results on equivalence structures (see [45, 185]).
In many cases, the existence of a computable copy of a structure is related
to the ability to enumerate a certain invariant of the structure.

Examples.
(i) Given a set S, define the algebraic extension FS of the prime field Q to
be Q({√px : x ∈ S}). The field FS has an X -computable copy if and only if
S is c.e. in X .
(ii) Given a set S, define a subgroup G(S) of (Q,+) by having a generator
1
px
for G(S) if and only if x ∈ S. Then G(S) has an X -computable copy if

and only if S is c.e. in X .

It is well-known that under an appropriate choice of S neither FS nor
G(S) has a Turing degree for its isomorphism type (see, for example, [39]).
Nevertheless, in the examples above, we may define the enumeration degree of
FS or G(S) to be the degree of the setS under the enumeration reducibility≤e .
There is also a direct way to define an enumeration degree spectrum of a
structure, as A. Soskova and Soskov did in [322, 323]. More generally, wemay
view a degree spectrum as a mass problem. The following general definition
is due to Medvedev.
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Definition 5 ([237]). Amass problem is a collection of total functions from
ù to ù.

Stukachev defined various reducibilities between mass problems of struc-
tures, such as Muchnik reducibility. As usual, we identify the atomic diagram
D(B) of a countable structure B with its characteristic function ÷D(B) ∈ 2ù ,
under Gödel coding of formulas.

Definition 6 ([324]).

(i) The mass problem of a countable structureA is the set
{÷D(B) : B ∼= A}.

(ii) Given countable structuresA and B, we say thatA isMuchnik reducible
to B, in symbols A ≤w B, if DgSp(A) ⊆ DgSp(B).

Thus, A is Muchnik equivalent to B, written as A =w B, if A ≤w B
and B ≤w A. Selman’s theorem [311] states that if a structure has an enu-
meration degree as defined above, then ≤w coincides with the enumeration
reducibility ≤e . Thus, the notion of enumeration degree is a special case
of Definition 6. For other reducibilities on mass problems of structures see
Stukachev [324, 325].
Whenever a reducibility is defined, we look for a suitable definition of the
jump. Various authors recently and independently introduced the notion of the
jump of an abstract structure: Baleva [22] and Soskov and A. Soskova [323]
using Moschovakis extensions; Morozov [271] and Puzarenko [286] in the
context of admissible sets; Montalbán [258] using predicates for computable
infinitary Σ1 formulas; Stukachev [326] using hereditarily finite extensions. It
is remarkable that these different approaches turned out to be equivalent. We
give the definition due to Montalbán.

Definition 7 ([258]). Given a languageL, let {èi : i ∈ ù} be a computable
enumeration of all computable infinitary Σ1 formulas in L. Given a structure
A for L, let A′ be the structure obtained by adding to A infinitely many
relations Pi , for i ∈ ù, where

A |= Pi(x)⇔ èi(x),
and the arity of Pi is the same as the length of x in èi(x).

Several results on degree spectra of structures can be re-formulated in terms
of the jumps of structures. For instance, the result of Downey and Jockusch
in [75] that every low Boolean algebra is isomorphic to a computable one
follows from the following result. If B is a Boolean algebra, and 0′ computes
a copy of B′, then B has a computable copy. A better understanding of the
jump operator on structures may help us establish or refute the lown Boolean
algebra conjecture.
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A. Soskova and Soskov, and also Montalbán showed that the spectrum of
a structure behaves well with respect to the jump operator of the structure.
More precisely, they established the following jump inversion theorem.

Theorem 19 ([323, 258]). For every structureA, we have
DgSp(A′) = {d′ : d ∈ DgSp(A)}.

Other authors also independently proved the jump inversion theorem. See
Stukachev [326] for more on the jump inversion results. Recently, Puzarenko
[287] andMontalbán [256] showed independently and simultaneously that the
jump operator has a fixed point.

Theorem 20 ([287, 256]). There is a structureA such thatA =w A′.

Montalbán proved this theorem under the assumption that “0# exists”, and
Puzarenko obtained another proof that does not use this assumption.
Andrews and J. Miller [9] have recently defined the spectrum of a theory T
to be the set of Turing degrees of models of T . The idea behind this notion is
to better understand the relationship between the model-theoretic properties
of a theory and the computability-theoretic complexity of its models. Theory
spectra may coincide with degree spectra of structures, e.g., the cones above
arbitrary Turing degrees are theory spectra, as well as the set of all noncom-
putable degrees. On the other hand, there are examples of theory spectra that
are not degree spectra for any structure, and vice versa. We say that a real x
is Martin-Löf random or 1-random iff for every computable collection of c.e.
open sets {Un : n ∈ ù}, with ì(Un) ≤ 2−n, n ∈ ù, we have x /∈ ∩n∈ùUn,
where ì is the standard Lebesgue measure on the Cantor space. A Turing
degree is called 1-random if it contains a set that is 1-random. For more on
randomness see [278, 74].

Theorem 21 ([9]). The following sets of Turing degrees can be theory spectra:
(a) the degrees of complete extensions of Peano arithmetic,
(b) 1-random degrees, and
(c) the union of the cones above two incomparable Turing degrees.

However, as it follows from [322] and [9], these sets are not the degree
spectra of any structures. On the other hand, by [144], there is a structure the
degree spectrum of which consists of exactly the non-hyperarithmetic degrees.

Theorem 22 ([9]). The collection of non-hyperarithmetic degrees is not the
spectrum of a theory.

Further interesting examples can be found in [9], and for the case of atomic
theories in [7].
The notion of the degree spectrum of a structure turned out to be useful in
order to find a new approach to resolve one of the most famous conjectures in
mathematical logic: Vaught’s conjecture. Recall thatVaught’s conjecture states
that the number of countable models of a first-order theory is either countable
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or continuum. In [255], Montalbán analyzed computability-theoretic prop-
erties of a possible counterexample to Vaught’s conjecture in terms of degree
spectra of its models. The analysis is done under the assumption of projective
determinacy (PD). The result of [255] is stated not only for finitary first-order
theories, but for Lù1ù sentences. When the continuum hypothesis (CH) does
not hold, we say that an Lù1ù-theory T is a counterexample to Vaught’s con-
jecture if it has uncountably many countable models but not continuummany.
Montalbán [255] also gives another definition, which is equivalent to the given
definition under¬CH,and alsomakes sensewhenCHholds. Hedefines a class
K of structures to satisfy the property hyperarithmetic-is-computable on a cone
if there exists Y such that for all X with X ≥T Y , every X -hyperarithmetic
structure in K has an X -computable copy.

Theorem 23 (ZFC + PD). ([255]) Let T be anLù1ù-sentence with uncount-
ably many countable models. The following are equivalent:
(i) T is a counterexample to Vaught’s conjecture;
(ii) The class of models of T satisfies the property hyperarithmetic-is-
computable on a cone; and
(iii) There exists an oracle relative to which

{DgSp(A) : A |= T} = {{X ∈ 2ù : ùX1 ≥ α} : α ∈ ù1}.

§3. Theories, types, models, and diagrams. We will assume that our theo-
ries are consistent, countable, and have infinite models. We will denote the
elementary (complete) diagram of A by Dc(A). It is easy to see that the the-
ory of a structure A is computable in Dc(A), and that Dc(A) is computable
in (D(A))(ù). The atomic diagram of a model of a theory may be of much
lower Turing degree than the theory itself. Henkin’s construction of models
is effective and establishes that a decidable theory has a decidable model. The
low basis theorem can be used to obtain for a theory S, a model A with

(Dc(A))′ ≤T S′.
Harizanov,Knight, andMorozov [156] showed that for every automorphically
nontrivial structure A, and every set X ≥T Dc(A), there exists B ∼= A such
that

Dc(B) ≡T D(B) ≡T X.
For every automorphically trivial structureA, we haveDc(A) ≡T D(A).
A structureA is called n-decidable for n ≥ 1 if the Σn-diagram ofA is decid-
able. We will denote Σn-diagram A by Dn(A). For any structure A, Dn+1(A)
is c.e.a. in Dn(A), uniformly in n, where D0(A) = D(A). Chisholm and
Moses [52] established that there is a linear order that is n-decidable for every
n ∈ ù, but has no decidable copy. Goncharov [121] earlier obtained a similar
result for Boolean algebras. There are familiar structures A such that for all
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B ∼= A, we have Dc(B) ≡T D(B). In particular, this is true for algebraically
closed fields, and for other structures for which we have effective elimination
of quantifiers. In [156], Harizanov, Knight, and Morozov gave syntactic con-
ditions onA under which for all B ∼= A, we haveDc(B) ≡T Dn(B) for n ∈ ù.
In the early 1960s, Vaught [331] developed the theory of prime, saturated,
and homogeneous models using types. A countable structure A is homoge-
neous if for every two finite sequences a and b of the same length n, if a and b
realize the same n-type in A, then there is an automorphism of A taking a
to b. Every countable complete theory has a countable homogeneous model.
Prime models and countable saturated models are examples of homogeneous
models. The study of the computable content of these models was initiated in
the 1970s. The set of all computable types of a complete decidable theory is a
Π02 set. Every principal type of such a theory is computable, and the set of all
its principal types is Π01.
A model A of a theory T is prime if for all models B of T, A elementarily
embeds into B. For example, the algebraic numbers form a prime model of
the theory of algebraically closed fields of characteristic 0. All prime models
of a given theory are isomorphic. It is well-known that every complete atomic
theory has a primemodel. It is not difficult to show that if a complete decidable
theory T has a decidable prime model, then the set of all principal types of T
is uniformly computable. Goncharov and Nurtazin [142] and independently
Harrington [157] established the converse.

Theorem 24 ([142, 157]). For a complete decidable theory T, the following
are equivalent.

1. There is a uniform procedure that maps a formula consistent with T into a
computable principal type of T, which contains this formula.

2. The theory T has a decidable prime model.
3. The theory T has a prime model and the set of all principal types of T is
uniformly computable.

For a setX and its Turing degreex = deg(X ), we say that a structureA is de-
cidable inX or x-decidable ifDc(A) ≤T X . Drobotun [87] and T.Millar [245]
independently showed that a complete, atomic, decidable theory has a 0′-
decidable prime model. More recently, Csima [64] strengthened this result by
showing that every complete, atomic, decidable theory T has a prime model
A such that Dc(A) is low. Although Csima’s result has the same flavor as the
low basis theorem, it does not follow from it. Epstein extended Csima’s result
by establishing the following.

Theorem 25 ([89]). Let T be a complete, atomic, decidable theory with a
prime model A such that Dc(A) has a c.e. degree c > 0. Then there is a prime
model B of T such thatDc(B) has a low c.e. degree a, where a < c.
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On the other hand, there are theories with prime models the elementary
diagrams of which have minimal degrees, but the theories have no decidable
prime models.
Goncharov [128] proved that there is a complete, decidable, ù-stable theory
in a finite language having no computable homogeneous model. A theory
T is ù-stable if for everyM |= T and every countable X ⊆ M , there are
only countably many types of T over X . (Uncountably categorical theories,
which will be investigated in the next section, are notable examples ofù-stable
theories.) Goncharov’s theory has infinitely many axioms. Peretyat’kin [285]
constructed a complete, atomic, finitely axiomatizable (hence decidable) the-
ory without a computable prime model. T. Millar [243] came up with a
weaker notion of a decidable model, the notion of an almost decidable model,
and showed that if a complete decidable theory has fewer than continuum
many complete types, then the theory has an almost decidable prime model.
Since not every decidable complete theory with only countably many com-
plete types has a decidable model [128], T. Millar’s result cannot be extended
to decidable primemodels. Hirschfeld obtained an interesting result about the
degree spectrum of a prime model, already mentioned in the previous section.

Theorem 26 ([171]). There is a prime model of a complete decidable theory
with Slaman–Wehner degree spectrum.

We can also consider theories of algebraic structures from natural classes,
such as groups or linear orders. Even if their theories are not necessarily
decidable, they can have computable models. N. Khisamiev obtained the
following negative result.

Theorem 27 ([197]). There is a complete theory of abelian groups with both
a computable model and a prime model, but no computable prime model.

Interestingly, the proof of this result has influenced other investigations in
computable model theory, outside group theory. Khisamiev’s proof uses the
concept of a limitwise monotonic function, which he introduced in [196] to
study which abelian p-groups have computable isomorphic copies.

Definition 8 ([196]). A total function F : ù → ù is limitwise monotonic if
there is a computable function f: ù2 → ù such that for all i, s ∈ ù, we have
f(i, s) ≤ f(i, s + 1), the limit lim

s→∞
f(i, s) exists, and F (i) = lim

s→∞
f(i, s).

See [185] for more on limitwise monotonic functions. Using limitwise
monotonic functions, Hirschfeldt obtained a negative solution to a long-
standing problem posed by Rosenstein [299].

Theorem 28 ([169]). There is a complete theory of linear orders having a
computable model and a prime model, but no computable prime model.

A set X and its Turing degree are called prime bounding if every complete,
atomic, decidable theory has a prime modelA such thatDc(A) ≤T X . Thus,
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0′ is prime bounding. Csima, Hirschfeldt, Knight, and Soare obtained the
following equivalence.

Theorem 29 ([66]). Let X ≤T ∅′. Then X is prime bounding if and only if
X is not low2.

This theorem gives an interesting characterization of low2 sets in terms of
prime models of certain theories, thus providing a link between computable
model theory and degree theory. To prove that a low2 setX is not prime bound-
ing, we use a ∅′-computable listing of the array of sets {Y : Y ≤T X} to find
a complete, atomic, decidable theory T , which diagonalizes against all po-
tential prime models of T the elementary diagrams of which are computable
in X . To prove that any set X that is not low2 is indeed prime bounding,
we fix a function f ≤T X that dominates every total ∅′-computable func-
tion. Given a complete, atomic, decidable theory T , we use f to build a
prime model of T . In addition to the two properties in Theorem 29, Csima,
Hirschfeldt, Knight, and Soare [66] consider a number of other properties
equivalent to these two, some of which are related to limitwise monotonic
functions.
Recall that a countable saturated model is a model realizing every type
of its language augmented by any finite tuple of constants for its elements.
The earliest effective notion related to saturated models was the notion of
a recursively saturated model introduced and first studied by Barwise and
Schlipf in [26]. A recursively saturated model is a model (of a computable
language) realizing every computable set of formulas consistent with its the-
ory, in the language expanded by any finite set of constants. Note that every
saturated model is recursively saturated. It is well-known that a complete
theory has a countable saturated model if and only if the theory has only
countably many n-types for every n ≥ 1. On the other hand, every com-
plete theory in a computable language with infinite models has a countable
recursively saturated model. In fact, in the case of a computable language,
early proofs of several classical results in model theory can be simplified us-
ing recursively saturated models (see [49]). The simplification is done by
replacing “large” models by recursively saturated models in the proofs [26].
The “large” models exist only under certain set-theoretic restrictions [49].
Being a computable language is often not a severe restriction since many
important languages are computable or even finite. These remarkable re-
sults provide an application of computability theory to classical model theory.
However, a recursively saturated model does not have to be decidable or
even computable, so we will turn our attention to decidable saturated mod-
els.
Decidable saturated models of complete decidable theories are fairly well-
understood. There is a complete description of decidable saturated models in
terms of types, due to Morley [259] and T. Millar [245] independently.
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Theorem 30 ([259, 245]). Let T be a complete decidable theory. The set of
all types of T is uniformly computable if and only if T has a decidable saturated
model.

Thus, a complete theory with a decidable saturated model also has a de-
cidable prime model. Morozov obtained a general positive result for Boolean
algebras.

Theorem 31 ([261]). Every countable saturated Boolean algebra has a decid-
able isomorphic copy.

If the types are not uniformly computable, then the existence of a decidable
saturated model is not guaranteed, as shown independently by Goncharov
and Nurtazin [142], Morley [259] and T. Millar [245], who constructed coun-
terexamples.

Theorem 32 ([142, 259, 245]). There is a complete decidable theory with all
types computable, which does not have a decidable saturated model.

Any saturated model of a complete decidable theory with all types com-
putable has a 0′-decidable isomorphic copy [142, 259, 245]. This result leads
to the investigation of the effective content of saturated models using degree-
theoretic concepts and machinery. The following definition was introduced
by Harris and is similar to the one for prime models. A Turing degree d is sat-
urated bounding if every complete decidable theory with types all computable
has a d-decidable saturated model. Macintyre and Marker [226] showed that
the degrees of complete extensions of Peano arithmetic are saturated bound-
ing. There is a recent negative result due to Harris.

Theorem 33 ([159]). For every n ∈ ù, no lown c.e. degree is saturated bound-
ing.

For a structure A, the type spectrum of A is the set of all types realized
in A. Since a countable homogeneous structure is uniquely determined, up
to isomorphism, by the set of types it realizes, Morley posed the following
natural question for a complete decidable theory T. If the type spectrum of
a countable homogeneous model A of T consists only of computable types
and is computable, doesA have a decidable isomorphic copy? Independently,
Goncharov [124], Peretyat’kin [284], and T. Millar [246] answered Morley’s
question negatively.

Theorem 34 ([124, 284, 246]). There exists a complete decidable theory T
having a homogeneous modelM without a decidable copy, such that the type
spectrum ofM consists only of computable types and is computable.
In fact, Goncharov [124] and Peretyat’kin [284] provided a criterion for a
homogeneous model to be decidable. Their criterion can be stated in terms
of the effective extension property. A computable set of computable types of
a theory has the effective extension property if there is a partial computable
function f which, given a type Γn of arity k and a formula èi of arity k + 1
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(identified with their indices), outputs the index for a type containing Γn
and èi , if there exists such a type.
It is well-known that every countable model has a countable homogeneous
elementary extension. Ershov conjectured that every decidable model can be
elementary embedded into a decidable homogeneous elementary extension.
Peretyat’kin refuted Ershov’s conjecture in a strong way.

Theorem 35 ([283]). There exists a decidable model, which does not have a
computable homogeneous elementary extension.

Goncharov andDrobotun [133] constructed a computable linear order that
does not have a computable homogeneous elementary extension.
Regarding more recent investigation of degree-theoretic content of homo-
geneousmodels, similarly to prime bounding and saturated bounding degrees,
we have the following definition. A Turing degree d is homogeneous bounding
if every complete decidable theory has a d-decidable homogeneous model.
Csima, Harizanov, Hirschfeldt, and Soare obtained the following result about
homogeneous bounding degrees.

Theorem 36 ([61]). There is a complete decidable theory T such that every
countable homogeneous model of T has the degree of a complete extension of
Peano arithmetic.

This theorem implies that every homogeneous bounding degree is the degree
of a complete extension of Peano arithmetic, but it is in fact stronger, since we
build a single theory T such that the use of the degrees of complete extensions
of Peano arithmetic is necessary to compute even the atomic diagram of a
homogeneous model of T . Together with the converse of Theorem 36 due to
Macintyre and Marker [226], we have the following consequence.

Corollary 1. A Turing degree d is homogeneous bounding if and only d is
the degree of a complete extension of Peano arithmetic.

Lange introduced the following definition of a 0-homogeneous bounding
degree.

Definition 9 ([219]).

1. A countable structure A has a d-basis if the types realized in A are
all computable and the Turing degree d can list ∆00-indices for all types
realized in A.

2. A Turing degree c is 0-basis homogeneous bounding if for every automor-
phically nontrivial homogeneous model A with a 0-basis, there exists B
such that B ∼= A and B is c-decidable.

Now we can restate Theorem 34 as follows: There exists a homogeneous
model A having a 0-basis but no decidable isomorphic copy.
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Theorem 37 ([219]). Let T be a complete decidable theory and let A be a
homogeneous model of T with a 0′-basis. Then A has an isomorphic copy
decidable in a low degree.

This theorem implies Csima’s result that every complete, atomic, decidable
theory T has a prime model decidable in a low degree (see [64]).

Theorem 38 ([219]). Let T be a complete decidable theory with all types
computable. Let A be a homogeneous model of T with a 0-basis. Then A has
an isomorphic copy B decidable in any nonzero degree.
Lange also gave a characterization of 0-basis homogeneous bounding de-
grees.

Theorem 39 ([219, 220]). A degree d ≤ 0′ is 0-basis homogeneous bounding
if and only if d is nonlow2.

§4. Small theories and their models. We now consider the question of the
existence of effective (computable, decidable, etc.) models for small theories,
that is, theories with at most countably many countable models.

Definition 10. Let κ be a cardinal. A theory is called κ-categorical if it
has exactly one model of cardinality κ, up to isomorphism.

The following result iswell-knownasMorley’s categoricity theorem (see [49]).

Theorem 40 (Morley). If a theory T is κ-categorical for some uncountable
cardinal κ, then T is ë-categorical for all uncountable ë.

Hence, theories categorical in an uncountable cardinal are also called un-
countably categorical. The theories that are ℵ0-categorical are also called
countably categorical. A theory that is both countably and uncountably cat-
egorical is simply called totally categorical. For the case of an uncountably
categorical but not countably categorical theory, Baldwin and Lachlan [21]
established that its countable models can be listed in a chain of proper ele-
mentary embeddings:

A0 � A1 � A2 � · · · � Aù ,
where A0 is a prime model, and Aù is a saturated model of the theory. Thus,
an uncountably categorical theory has either only one countable model or
countably many countable models, up to isomorphism.

Definition 11. A theory is called Ehrenfeucht if it has finitely many but
more than one countable models, up to isomorphism.

By Vaught’s theorem, if a theory has two nonisomorphic models, then it
has at least three nonisomorphic models. An example of a theory with exactly
three countable models was given by Ehrenfeucht. His result can be easily
generalized to obtain a theory with exactly n countable models, for any finite
n ≥ 3.



COMPUTABLEMODEL THEORY 145

An important question in computable model theory is when a small theory
has a computable model. For the case of countably categorical theories, Ler-
man and Schmerl [225] gave sufficient conditions, which were later extended
by Knight as follows.

Theorem 41 ([208]). Let T be a countably categorical theory. If T ∩Σn+2 is
Σ0n+1 uniformly in n, then T has a computable model.

The natural question posed by Knight is whether there exist countably
categorical theories of high complexity, which satisfy the conditions of the
previous theorem. First examples were given byGoncharov andKhoussainov
in [139], and then generalized by Fokina as follows.

Theorem 42 ([95]). There exists a countably categorical theory of arbitrary
arithmetic complexity, which has a computable model.

The proof is based on the method of Marker’s extensions from [139]. (This
methodwas later applied to investigate various other properties of computable
structures, such as in [100, 103].)
The case of a countably categorical theory with a nonarithmetic complexity
was resolved by Khoussainov and Montalbán [201]. The unique model of
their theory, up to isomorphism, is a modification of the random graph.

Theorem 43 ([201]). There exists a countably categorical theory S with a

computable model such that S ≡T 0(ù).
Another proof of Theorem 43 can be found in [6].
Recall that a consistent decidable theory always has a decidable model.
For small theories we can say more. Obviously, if a theory is countably
categorical and decidable, then its only (up to isomorphism) countable model
always has a decidable copy. For the case of uncountably categorical but
not countably categorical theories, Harrington [157] and N. Khisamiev [195]
showed that such a theory T is decidable if and only if all countable models
of T have decidable isomorphic copies. If T is uncountably categorical but
not decidable, then it is possible that some of its models can be isomorphic
to computable models, while the others cannot be isomorphic to computable
ones.
The following definition of a spectrum of computable models was intro-
duced by Khoussainov, Nies, and Shore.

Definition 12 ([203]). Let T be an uncountably categorical theory with
Baldwin–Lachlan elementary chain of countable models:

A0 � A1 � A2 � · · · � Aù .

The spectrum of computable models of the theory T is the set:

SCM(T ) = {i ≤ ù : Ai has a computable isomorphic copy}.
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A number of researchers investigated which sets can be realized as spec-
tra of computable models of uncountably categorical theories. The first
example of a nontrivial spectrum of computable models for uncountably
categorical theories was given by Goncharov in [123], where he produced
a theory with only the prime model A0 being isomorphic to a computable
one. Goncharov’s example was followed by a series of results about vari-
ous spectra by Kudaibergenov [214], Khoussainov, Nies, and Shore [203],
Nies [277], Herwig, Lempp, and Ziegler [164], Hirschfeldt, Khoussainov,
and Semukhin [172], and Andrews [5, 4]. All these spectra of computable
models are finite or co-finite. On the other hand, the upper bound Nies
gave in [277] is Σ0ù+3. The above mentioned uncountably categorical theories
are 0′′-decidable, in particular, all their countable models are isomorphic to
0′′-decidable ones. Two natural questions arise:

1. What could be a complexity of an uncountably categorical theory with
a computable model?

2. Is there a bound on the complexity of all countablemodels, up to isomor-
phism, of an uncountably categorical theory with a computable model?

Concerning the first question, the examples of arbitrary arithmetic complex-
ity were given in [95, 139]. Again, the authors used Marker’s extensions to
build the structures. Andrews [6] resolved the nonarithmetic case by adapt-
ing famous Hrushovski’s examples from [177] to computable model-theoretic
setting.

Theorem 44 ([6]). There exist uncountably categorical theories of arbitrary
arithmetic complexity, as well as of nonarithmetic complexity, which have com-
putable models.

Andrews used the samemethod to obtain the spectra of computable models
in [5, 4]. The original Hrushovski’s construction [177] is a powerful model-
theoretic tool for building strongly minimal theories. Its modification by
Andrews allows us to carry out the construction effectively, and with much
greater control, thus providing a remarkable application of model-theoretic
methods to solve computability-theoretic problems.
The second question was raised in the mid 1990s by Lempp. He asked
whether it was possible to construct an uncountably categorical theoryT with
a computable prime model such that none of the countable nonprime models
is even arithmetic? The answer to this question is negative for a subclass
of uncountably categorical theories (see [118]). As usual, acl stands for the
algebraic closure operation.

Definition 13. (i) A complete theoryT is stronglyminimal if any definable
subset of any modelM of T is finite or co-finite. A structureM is strongly
minimal if it has a strongly minimal theory.
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(ii) A strongly minimal modelM is trivial if for all subsets A ⊆M ,
acl(A) =

⋃

a∈A
acl({a}).

Goncharov, Harizanov, Lempp, Laskowski, and McCoy established the
following result for trivial, strongly minimal models.

Theorem 45 ([118]). LetMbea computable, trivial, stronglyminimalmodel.
Then Th(M) forms a 0′′-computable set of sentences, and thus all countable
models of Th(M) are isomorphic to 0′′-decidable ones.
In particular, all countablemodels of Th(M) are isomorphic to 0′′-comput-
able models. The proof of Theorem 45 shows an interesting interplay between
algorithmic andmodel-theoretic properties of structures. Namely, the authors
proved that for any trivial, strongly minimal theory T in language L, the
elementary diagram of any model M of T is a model complete L-theory.
This implies thatT is ∀∃-axiomatizable, which in turn implies 0′′-decidability.
Furthermore, it was established in [118] that for any strongly minimal, trivial,
not totally categorical theory T , the spectrum of computable models is Σ05.
As Khoussainov, Laskowski, Lempp, and Solomon showed in [199], the
result in Theorem 45 is best possible in the following sense.

Theorem 46 ([199]). There exists a trivial, strongly minimal (and hence un-
countably categorical ) theory, which has a computable prime model and each of
the other countable models computes 0′′.

In [73], Dolich, Laskowski, and Raichev generalized the results of [118] to
any uncountably categorical, trivial theory of Morley rank 1. A new, more
constructive proof of the same results can be found in [222].
In the case of Ehrenfeucht theories, the question which models can be
computable or decidable also has a long history. In the mid 70s, Nerode asked
whether all models of a decidable Ehrenfeucht theory must be decidable, by
analogy with the results in [157, 195]. Morley [259] gave an example of a
theory with six models, of which only the prime model was decidable. A good
overview of further related results can be found in [113].
Sudoplatov [327] gave a model-theoretic characterization of Ehrenfeucht
models, that is, models of Ehrenfeucht theories. In particular, he introduced
the notion of a limit model, and a special kind of a pre-order on the set
of almost prime models. Recall that a model is almost prime if it becomes
prime after an enrichment by finitely many constants. Analogously to the
case of uncountably categorical theories, Gavryushkin introduced in [114] a
notion of the spectrum of computable models for Ehrenfeucht theories. He
characterized these spectra in Sudoplatov’s terms of pre-orders on almost
prime models and the number of limit models over almost prime models.
Moreover, Gavryushkin constructed examples of computable Ehrenfeucht
models of arbitrarily high arithmetic and nonarithmetic complexity.
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Theorem 47 ([114]). For every n ≥ 3, there exists an Ehrenfeucht theory T
of arbitrary arithmetic complexity such that it has n countable models, up to
isomorphism, and it has a computable model among them. There also exists
such a theory, which is Turing equivalent to the true first-order arithmetic.

For further examples of Ehrenfeucht theories with various spectra of com-
putable models see [113].

§5. Effective categoricity. We are interested in the complexity of isomor-
phisms between a computable structure and its computable and noncom-
putable copies. The main notion in this area of investigation is that of com-
putable categoricity. A computable structureM is computably categorical if
for every computable structureA isomorphic toM, there exists a computable
isomorphism fromM onto A. This concept has been part of computable
model theory since 1956 when Fröhlich and Shepherdson [107] produced ex-
amples of computable fields, extensions of the rationals, of both finite and
infinite transcendence degrees, which were not computably categorical. These
examples refute the natural conjecture that a computable field is computably
categorical exactly when it has finite transcendence degree over its prime sub-
field (which is either Q or the p-element Fp, depending on characteristic).
Later, Ershov [90] showed that an algebraically closed field is computably cat-
egorical if and only if it has finite transcendence degree over its prime subfield.
This also follows from work of Nurtazin [280] and can be found in Metakides
and Nerode [240]. In [229], Mal’cev considered the notion of a recursively
(computably) stable structure. A computable structureM is computably stable
if every isomorphism fromM to another computable structure is computable.
In the same paper Mal’cev investigated the notion of autostability of struc-
tures, which is equivalent to that of computably categoricity. Since then
computable categoricity has been studied extensively. It has been extended
to arbitrary levels of hyperarithmetic hierarchy, and more precisely to Turing
degrees d. Computable categoricity of a computable structureM can also be
relativized to all (including noncomputable) structures A isomorphic toM
(see [17]).

Definition 14. Acomputable structureM is d-computably categorical if for
every computable structure A isomorphic toM, there exists a d-computable
isomorphism fromM onto A.

In the case when d = 0(n−1), n ≥ 1, we also say thatM is ∆0n-categorical.
Thus, computably categorical is the same as 0-computably categorical or
∆01-categorical. We can similarly define ∆

0
α-categorical structures for any com-

putable ordinal α.
Computably categorical structures tend to be quite rare. For a structure in
a typical algebraic class, being computably categorical is usually equivalent to
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having a finite basis or a finite generating set (for example, in the case of a vec-
tor space), or to being highly homogeneous (for example, in the case of a ran-
dom graph). For instance, Goncharov and Dzgoev [134], and Remmel [293]
independently proved that a computable linear order is computably categorical
if and only if it has only finitely many successor pairs (also called adjacen-
cies). They also established that a computable Boolean algebra is computably
categorical if and only if it has finitely many atoms (see also LaRoche [221]).
As usual, by Z(pn) we denote the cyclic group of order pn , and by Z(p∞) the
quasicyclic (Prüfer) abelian p-group. The length of an abelian p-group G ,
ë(G), is the least ordinal α such that pα+1G = pαG . The divisible part of G
is Div(G) = pë(G)G and is a direct summand of G . The group G is said to be
reduced if Div(G) = {0}. Goncharov [125] and Smith [316] independently
characterized computably categorical abelian p-groups as those that can be
written in one of the following forms: (Z(p∞))l ⊕F for l ∈ ù∪{∞} and F is
a finite group, or (Z(p∞))n ⊕H ⊕ (Z(pk))∞, where n, k ∈ ù andH is a finite
group. Goncharov, Lempp, and Solomon [119] proved that a computable,
ordered, abelian group is computably categorical if and only if it has finite
rank. Similarly, they showed that a computable, ordered, Archimedean group
is computably categorical if and only if it has finite rank. Lempp, McCoy,
R. Miller, and Solomon [223] characterized computably categorical trees of
finite height. R. Miller [250] previously established that no computable tree
of infinite height is computably categorical.
An equivalence structure is a structure with a single equivalence relation.
Calvert, Cenzer, Harizanov, and Morozov [32] established that a computable
equivalence structure A is computably categorical if and only if either A
has finitely many finite equivalence classes, or A has finitely many infinite
classes, upper bound on the size of finite classes, and exactly one finite k with
infinitely many classes of size k. An injection structureA = (A,f) consists of
a nonempty setA and a 1–1 functionf: A→ A. Given a ∈ A, the orbitOf(a)
of a under f is {b ∈ A : (∃n ∈ N)[fn(a) = b ∨ fn(b) = a]}. An injection
structure (A,f) may have two types of infinite orbits: Z-orbits, which are
isomorphic to (Z, S), and ù-orbits, which are isomorphic to (ù,S). Cenzer,
Harizanov, and Remmel [46] characterized computably categorical injection
structures as those that have finitely many infinite orbits.
R. Miller and Schoutens [252] solved a long-standing problem by con-
structing a computable field that has infinite transcendence degree over the
rationals, yet is computably categorical. Their idea uses a computable set of
rational polynomials (more specifically, the Fermat polynomials) to “tag” el-
ements of a transcendence basis. Hence their field has an infinite intrinsically
computable transcendence basis (that is, computable in every isomorphic com-
putable copy of the field), with each single element effectively distinguishable
from the others.
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Very little is known about ∆0n-categoricity, for n ≥ 2, of structures from nat-
ural classes of algebraic structures. Obtaining their classification is usually a
difficult task. The reason is either the absence of invariants (such as for linear
orders, abelian and nilpotent groups), or the lack of a suitable computability-
theoretic notion which would capture the property of being ∆0n-categorical
(see discussion of ∆02-categoricity for equivalence structures below). There is
a complete description of higher levels categoricity (in fact, stability) for well-
orders due to Ash [11]. Harris [158] has recently announced a description of
∆0n-categorical Boolean algebras, for any n < ù. McCoy [236] characterized,
under certain restrictions, ∆02-categorical linear orders and Boolean algebras.
Barker [24] proved that for every computable ordinal α, there are ∆02α+2 cate-

gorical but not ∆02α+1 categorical abelian p-groups. Lempp,McCoy, R.Miller,
and Solomon [223] proved that for every n ≥ 1, there is a computable tree of
finite height, which is ∆0n+1-categorical but not ∆

0
n-categorical.

The following problems remain open. Describe ∆02-categorical linear orders.
Describe∆02-categorical equivalence relations. Describe∆

0
2-categorical abelian

p-groups. Resolving these problems may require new algebraic invariants or
new computability-theoretic notions.
In the next theorem we present several recent results on the upper bounds
for categoricity. Recall that a set X is semi-low if {e : We ∩ X 6= ∅} is ∆02.
Theorem 48. (i) ( follows from [44, 234]) Every computable, free, non-
abelian group is ∆04-categorical, and the result cannot be improved to ∆

0
3.

(ii) ([80]) Every computable, free, abelian group is ∆02-categorical, and the
result cannot be improved to computable categoricity.
(iii) ([80]) Every computable abelian group of the form

⊕
i∈ù Hi , where

Hi ≤ (Q,+) for i ∈ ù, is ∆03-categorical. A computable group of this form is
∆02-categorical if and only if it is isomorphic to a free module over a localization
of Z by a set of primes with a semi-low complement.
(iv) ([32]) Every computable equivalence relation is ∆03-categorical, and the
result cannot be improved to ∆02.

We may compare these results with those stated in Theorems 90 and 91.
More generally, the study of higher categoricity is often equivalent to the
study of algebraic properties of a family of relations specific for a given class
(such as independence relations, back-and-forth relations, etc.). The result
in Theorem 48 (iii) has been recently extended to arbitrary direct sums of
rational subgroups [79], for which the sharp upper bound is ∆05.
We can relativize the notion of ∆0α-categoricity by studying the complexity
of isomorphisms from a computable structure to any countable isomorphic
structure.

Definition 15. A computable structureM is relatively ∆0α-categorical if for
everyA isomorphic toM, there is an isomorphism fromM toA, which is ∆0α
relative to the atomic diagram of A.
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Clearly, a relatively ∆0α-categorical structure is ∆
0
α-categorical. For linear

orders [134, 293], Boolean algebras [134, 293], trees of finite height [223],
abelian p-groups [125, 316, 33], equivalence structures [32], and injection
structures [46], computable categoricity implies relative computable categoric-
ity. R. Miller and Shlapentokh [253] proved that a computable algebraic field
F with a splitting algorithm is computably categorical iff it is decidable which
pairs of elements of F belong to the same orbit under automorphisms. They
also showed that this criterion is equivalent to relative computable categoricity
of F .
A remarkable feature of relative ∆0α-categoricity is that it admits a syntac-
tic characterization. This characterization involves the existence of certain
effective Scott families. Scott families come from Scott isomorphism theorem,
which says that for a countable structure A, there is an Lù1ù-sentence the
countable models of which are exactly the isomorphic copies of A. For proof
of Scott isomorphism theorem see [17]. A Scott family for a structure A is
a countable family Φ of Lù1ù-formulas with finitely many fixed parameters
from A such that:
(i) Each finite tuple in A satisfies some ø ∈ Φ; and
(ii) If a, b are tuples in A, of the same length, satisfying the same formula
in Φ, then there is an automorphism of A, which maps a to b.
If we strengthen condition (ii) to require that the formulas in Φ define each
tuple in A, then Φ is called a defining family forA. A formally Σ0α Scott family
is a Σ0α Scott family consisting of computable Σα formulas. In particular, it
follows that a formally c.e. Scott family is a c.e. Scott family consisting of
finitary existential formulas. The following equivalence was established by
Goncharov [120] for α = 1, and by Ash, Knight, Manasse, and Slaman [10]
and independently by Chisholm [50] for any computable ordinal α.

Theorem 49 ([10, 50]). The following are equivalent for a computable struc-
tureA.
1. The structureA is relatively ∆0α-categorical.
2. The structureA has a formally Σ0α Scott family Φ.
3. The structureA has a formally c.e. Scott family Φ.
Infinitary language is essential for Scott families. Cholak, Shore, and
Solomon [55] proved the existence of a computably stable rigid graph that
does not have a Scott family of finitary formulas.
In [236], McCoy characterized relatively ∆02-categorical linear orders and
Boolean algebras. In [235], McCoy gave a complete description of relatively
∆03-categorical Boolean algebras, and proved that there are 2

ℵ0 relatively ∆03-
categorical linear orders. More recently, Calvert, Cenzer, Harizanov, and
Morozov investigated relative ∆02-categoricity for equivalence structures [32]
and abelian p-groups [33], and Cenzer, Harizanov, and Remmel [46] investi-
gated relative ∆02-categoricity for injection structures. In the following theorem
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we state some of these characterizations of relative ∆02-categoricity. As usual,
by ù∗ we denote the reverse order of ù, and by ç the order type of rationals.
For a group G , the period of G is max{order(g) : g ∈ G} if this quantity is
finite, and∞ otherwise.
Theorem 50. (i) ([236])Acomputable linear order is relatively∆02-categorical
if and only if it is a sum of finitely many intervals, each of type m, ù, ù∗, Z,
or n · ç, so that each interval of type n · ç has a supremum and infimum.
(ii) ([236]) A computable Boolean algebra is relatively ∆02-categorical if and
only if it can be expressed as a finite direct sum c1 ∨ · · · ∨ cn, where each ci is
either atomless, an atom, or a 1-atom.
(iii) ([32]) A computable equivalence structure is relatively ∆02-categorical if
and only if it either has finitely many infinite equivalence classes, or there is an
upper bound on the size its finite equivalence classes.
(iv) ([46]) A computable injection structure is relatively ∆02-categorical if and
only if it has finitely many orbits of type ù, or finitely many orbits of type Z.
(v) ([33]) A computable abelian p-group G is relatively ∆02-categorical iff G
is reduced and ë(G) ≤ ù, or G is isomorphic to⊕

α
Z(p∞) ⊕H , where α ≤ ù

andH has finite period.

Every∆02-categorical injection structure is relatively∆
0
2-categorical (see [46]).

Every computable injection structure is relatively ∆03-categorical. Every com-
putable equivalence structure is relatively ∆03-categorical. There is no such
bound for a computable abelian p-group G . For example, it follows from the
index set results in [40] that if ë(G) = ù ·n andm ≤ 2n− 1, or if ë(G) > ù ·n
and m ≤ 2n − 2, then G is not ∆0m-categorical.
Goncharov [122] was the first to show that computable categoricity of
a computable structure does not imply its relative computable categoricity.
The main idea of his proof was to code a special kind of family of sets
into a computable structure. Such families were constructed independently
by Badaev [20] and Selivanov [310]. The result of Goncharov was lifted
to higher levels in the hyperarithmetic hierarchy by Goncharov, Harizanov,
Knight, McCoy, R. Miller, and Solomon for successor ordinals [116], and
by Chisholm, Fokina, Goncharov, Harizanov, Knight, and Quinn for limit
ordinals [51].

Theorem 51 ([116, 51]). For every computable ordinal α, there is a ∆0α-
categorical but not relatively ∆0α-categorical structure.

It is not known whether every (computable) ∆11-categorical structure must
be relatively ∆11-categorical (see [137]). Kach and Turetsky [183] showed
that there exists a ∆02-categorical equivalence structure, which is not relatively
∆02-categorical. Hirschfeldt, Kramer, R. Miller, and Shlapentokh [168] char-
acterized relative computable categoricity for computable algebraic fields and
used their characterization to construct a field with the following property.
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Theorem 52 ([168]). There is a computably categorical algebraic field, which
is not relatively computably categorical.

Thenotions of computable categoricity and relative computable categoricity
coincide ifweaddmore effectiveness requirements on the structure. Goncharov
[120] proved that in the case of 2-decidable structures, computable categoricity
and relative computable categoricity coincide. Kudinov showed that the as-
sumption of 2-decidability cannot be weakened, by giving in [216] an example
of 1-decidable and computably categorical structure, which is not relatively
computably categorical. Ash [12] established that for every computable ordi-
nal α, under certain decidability conditions on A, if A is ∆0α-categorical, then
A is relatively ∆0α-categorical.
T. Millar [244] proved that if a structure A is 1-decidable, then any ex-
pansion of A by finitely many constants remains computably categorical.
Cholak, Goncharov, Khoussainov, and Shore showed that the assumption of
1-decidability is important.

Theorem 53 ([54]). There is a computable structure, which is computably
categorical, but ceases to be after naming any element of the structure.

Clearly, the structure in this theorem is not relatively computably categori-
cal. Khoussainov and Shore [205] proved that there is a computably categor-
ical structure A without a formally c.e. Scott family such that the expansion
of A by any finite number of constants is computably categorical.
Downey, Kach, Lempp, and Turetsky have recently obtained the following
result.

Theorem 54 ([83]). Any 1-decidable computably categorical structure is rel-
atively ∆02-categorical.

Based on this theorem, we could conjecture that every computable structure
that is computably categorical should be relatively ∆03-categorical. However,
this is not the case, as recently announced by Downey, Kach, Lempp, Lewis,
Montalbán, and Turetsky.

Theorem 55 ([76]). For every computable ordinal α, there is a computably
categorical structure that is not relatively ∆0α-categorical.

Thus, a natural question arises whether there is a computably categorical
structure that is not relatively hyperarithmetically categorical. In [76], the
uniformity of the constructed structures together with an overspill argument
allowed the authors to establish that the problem of computable categoricity
is Π11-complete, which was a long-standing open question.

Definition 16. The d-computable dimension of a computable structureM
is the number of computable isomorphic copies ofM, up to d-computable
isomorphism.

Hence, a computably categorical structure has computable dimension 1.
Many natural structures have computable dimension 1 or ù. For example,
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it was shown in [240] that it is impossible for a computable algebraic field to
have finite computable dimension greater than 1. Goncharov was the first to
produce examples of computable structures of finite computable dimension
greater than 1.

Theorem 56 ([127, 129]). For every finite n ≥ 2, there is a computable struc-
ture of computable dimension n.

After Goncharov’s examples, structures of finite computable dimension
n ≥ 2 were found in several familiar classes, such as 2-step nilpotent groups
[141] and other classes [174].
For a computable structureA, some Turing degree, which is not necessarily
0(n), may compute an isomorphism between any two computable copies of
the structure. The following notion of the categoricity spectrum, introduced
by Fokina, Kalimullin, and R. Miller, aims to capture the set of all Turing
degrees capable of computing isomorphisms between arbitrary computable
copies of A.
Definition 17 ([103]). Let A be a computable structure.
(i) The categoricity spectrum of A is

CatSpec(A) = {x : A is x-computably categorical}.
(ii) A Turing degree d is the degree of categoricity of A, if it exists, if d is
the least degree in CatSpec(A).
(iii) A Turing degree d is categorically definable if it is the degree of cate-
goricity of some computable structure.

This terminology intends to parallel the notions of the degree spectrum of
a structure A, and the degree of the isomorphism class of A. Since there
are only countably many computable structures, most Turing degrees are not
categorically definable. Fokina, Kalimullin, and R. Miller investigated which
Turing degrees are categorically definable. Their main result in [103] gives a
partial answer for the case of arithmetic degrees, and was later extended by
Csima, Franklin, and Shore to hyperarithmetic degrees. For setsX andY , we
say thatY is c.e. in and above (c.e.a. in)X ifY is c.e. relative toX , andX ≤T Y .
Theorem 57 ([65]). (i) For every computable ordinal α, 0(α) is the degree
of categoricity of a computable structure.

(ii) For a computable successor ordinal α, every degree d that is c.e.a. in 0(α)

is a degree of categoricity.

Negative results were also obtained in [103, 65]. Namely, if d is a non-
hyperarithmetic degree, then d cannot be the degree of categoricity of a com-
putable structure. Furthermore, Anderson and Csima showed that not all
hyperarithmetic degrees are degrees of categoricity.

Theorem 58 ([3]). (i) There exists a Σ02 degree that is not categorically de-
finable.
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(ii) Every degree of a set that is 2-generic relative to some perfect tree is not
a degree of categoricity.
(iii) Every noncomputable hyperimmune-free degree is not a degree of cate-
goricity.

Thus, it is natural to ask whether all ∆02 degrees are categorically definable?
Not every computable structure has a degree of categoricity. The first
negative example was built by R. Miller.

Theorem 59 ([251]). There exists a computable field with a splitting algo-
rithm, which is not computably categorical, and such that its categoricity spec-
trum must contain degrees d0 and d1 with d0 ∧ d1 = 0.
Subsequently, R. Miller built another computable field the categoricity
spectrum of which has no least degree and does not contain 0′. R. Miller
used the algebraicity of the field to present the isomorphisms between it and
a computable isomorphic copy as infinite paths through a finite-branching
computable tree. If the field has a splitting algorithm, then the branching of
this tree is computable, and we can apply the low basis theorem. If the field
does not have a splitting algorithm, then we relativize to the degree of the
branching and apply the relativized low basis theorem.
Further interesting examples of structureswithout the degree of categoricity
were built by Fokina, Frolov, and Kalimullin [98]. The main property of their
structures is that they are rigid, that is, they havenonontrivial automorphisms,
which was not the case for the examples in [251]. If a rigid structureM is
d-categorical, then it is also d-stable, i.e., every isomorphism fromM onto
a computable copy is d-computable. (The converse is not true, for example,
a computable copy of a two-dimensional vector space over Q is computably
stable but not rigid.) Constructions from [98] give for every nonzero c.e. degree
d, a rigid d-computably categorical structure with no degree of categoricity.

For all α < ùCK1 , and for all degrees d that are c.e. in 0
(α) and such that

d < 0(α), the structures from [103, 65] are rigid. When we pass to d.c.e.
structures, we lose the property of rigidity. It is natural to ask whether there
is a computable structure the categoricity spectrum of which is the set of all
noncomputable Turing degrees. It is also interesting to find out whether the
union of two cones of Turing degrees can be a categoricity spectrum.
In recent papers [132, 131, 130], Goncharov investigated categoricity re-
stricted to decidable structures.

Definition 18. A decidable structure A is called decidably categorical if
every two decidable copies of A are computably isomorphic.

Nurtazin gave the following characterization of decidably categorical struc-
tures. Recall that for a complete theory T , a formula è(x) is called complete
if for every formula ø(x), either T ⊢ è(x)⇒ ø(x) or T ⊢ è(x)⇒ ¬ø(x).
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Theorem 60 ([280]). Let A be a decidable structure. Then A is decidably
categorical if and only if there is a finite tuple c of elements in A such that (A, c)
is a prime model of the theory Th(A, c) and the set of complete formulas of this
theory is computable.

Moreover, Nurtazin proved that if there is no such c, then there are infinitely
many decidable copies of A no two of which are computably isomorphic.
Similarly to the case of computable categoricity, we define decidable cat-
egoricity spectrum of A to be the collection of degrees that can compute at
least one isomorphism between decidable copies ofM. In [132], Goncharov
studied decidable categoricity of almost prime models. It is not difficult to
see that the collection of atomic formulas in a decidable almost prime model
M is co-c.e. Therefore, a c.e. degree is always contained in the decidable
categoricity spectrum ofM. Goncharov established the following result.
Theorem 61 ([132]). Every c.e. degree d is the degree of decidable categoric-
ity of some decidable almost prime model.

Goncharov also investigated decidable categoricity of Ehrenfeucht models.

Theorem 62 ([131]). There exists a decidable Ehrenfeucht theory T such
that T has a decidable prime model that is decidably categorical, and T has a
decidable almost prime model that is not decidably categorical.

Effective categoricity of computable structures has also been recently in-
vestigated within Ershov’s difference hierarchy: for graphs by Khoussainov,
Stephan, and Yang [207], and for the equivalence structures by Cenzer,
LaForte, and Remmel [47].

§6. Automorphismsof effective structures. In algebra, automorphismgroups
of structures often reflect the algebraic properties of structures (for example,
as in Galois theory). In computable model theory, the study of effective au-
tomorphisms help us better understand computability-theoretic properties of
countable structures. The set of all automorphisms of a computable struc-
ture forms a group under composition, and we may ask questions about the
isomorphism types of this group and its natural subgroups. Thus, the the-
ory of automorphisms of effective structures provides another link between
computable algebra and classical group theory. We may also study the Tur-
ing degrees of members of the automorphism group. This line of investiga-
tion is related to the study of effective categoricity of structures. Finally, we
may restrict ourselves to computable structures from familiar classes (such as
Boolean algebras, linear orders, etc.) and study groups of effective automor-
phisms for these structures. As usual, we assume that all infinite computable
structures have ù as their domains. The next definition captures one of the
main notions of this investigation.
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Definition 19. For an infinite computable structureM (with domain ù)
and a Turing degree d, we define Autd(M) to be the set of all permutations of
ù, which are computable in d and induce automorphisms ofM.
We write Autc(M) for Aut0(M) (the subscript c stands for computable).
For every Turing degree d, the set Autd(M ) forms a group under composition.
In contrast, the set Autp(ù) of all primitive recursive permutations of ù is
not a group under composition, as shown by Kuznetsov [218]. One of the
central questions here is to study classical and effective properties of the group
Autd(M) for variousM and d. We can start with a structure in the empty
language, that is, ù with equality, and consider its automorphism group
Autd(ù) as a structure. Recall that the degree of the isomorphism type of a
structure, if it exists, is the least Turing degree in its Turing degree spectrum.
Morozov established the following result.

Theorem 63 ([264]). For every Turing degree d, the degree of the isomor-
phism type of the groupAutd(ù) is d′′.

Morozov showed that the embedding F : d → Autd(ù) can be used to
substitute Turing reducibility with the group-theoretic embedding.

Theorem 64 ([268]). For every pair c, d of Turing degrees, we have

(Autd(ù) ≦ Autc(ù))⇔ (d ≤ c),
where ≦ stands for the usual group-theoretic embedding.

It follows from this theorem that c = d if and only if Autd(ù) ∼= Autc(ù).
In contrast, there exists a Turing degree a such that Auta(ù) and Autb(ù)
are elementary equivalent for all b ≥ a (see [269]). Intuitively, the last state-
ment says that this first-order theory cannot recognize the difference between
very “large” Turing degrees. Kent investigated group-theoretic properties of
Autd(ù).

Theorem 65 ([192]). For every Turing degree d, the unique normal series for
Autd(ù) has the form

{1}✁ E ✁ F ✁Autd(ù),

where F is the subgroup of permutations that change only finitely many numbers,
E is the subgroup of even permutations of F , and 1 is the identity permutation.

Notice that a finitely generated subgroup of Autc(ù) has to be a Π01 group.
Higman asked if every Π01 finitely generated group can be isomorphically
embedded into Autc(ù). The following result of Morozov answers Higman’s
question negatively.

Theorem 66 ([270]). There exists a 2-generated Π01 group G such that G �
Autc(ù).

Morozov syntactically characterized subgroups of Autc(ù), which are iso-
morphic to the whole Autc(ù).
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Theorem 67 ([265]). There exists a first-order sentence in the language of
groups such that for every G ≦ Autc(ù),

(G |= φ)⇔ (G ∼= Autc(ù)).
More specifically, Morozov [265] proved that the class of all groups of the
formAutc(M), whereM is a computable structure, is definable in themonadic
second-order language within Autc(ù). He also showed that the theories of
the following three classes of groups are all distinct and differ from the theory
of all groups: (i) groups that can be embedded into Autc(ù), (ii) groups
that are Autc(M) for computableM, and (iii) computable groups. The first
class cannot be axiomatized by a hyperarithmetic set of axioms, the other
two cannot be axiomatized by any arithmetic set of axioms. Furthermore,
Morozov [265] proved that there exists a single sentence, consistent with the
theory of groups, which is not true in any group Autc(M) where M is a
computable structure.
Now, for various computable structures M, we compare Autd(M) and
Aut(M). For d = 0, Dzgoev [88], and independently Manaster and Rem-
mel [231] established the following result.

Theorem 68 ([88, 231]). There exists a computable structureM such that
Aut(M) has 2ù elements, while Autc(M) has only one element.
The previous theorem can be strengthened in several ways. Kudaibergenov
[215] showed thatwe canmake suchMdecidable andhomogeneous. Morozov
[267] proved that there exists a computable structure M with
card(Aut(M)) = 2ù such that every hyperarithmetic structure isomorphic
toM has no nontrivial hyperarithmetic automorphisms. For a criterion for
the existence of two isomorphic but not hyperarithmetically isomorphic tuples
in a hyperarithmetic structure, and examples of well-known structures with
this phenomenon see [117].
For a computable structureM, the group Autc(M) does not have to be
isomorphic to a computable one. Morozov [263] gave the following charac-
terization of Autc(M) having a computable copy.
Theorem 69 ([263]). For a computable structureM, the group Autc(M) is
isomorphic to a computable one if and only if there exists a finite tuple p such
that Aut(M, p) = {1}, and the set {(m, n) : m ∼=c n} is c.e., where

m ∼=c n ⇔ (∃f ∈ Autc(M))[f: m → n].

This theorem has some interesting corollaries.

Corollary 2 ([263]). Afinitely generated groupG is isomorphic toAutc(M)
for some computable structureM if and only ifG has a decidable word problem.
For groups that are not finitely generated the situation is rather complex.
Even if a group is abelian, not much can be said. It is not difficult to show that
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⊕
p∈S Zp, where S is a set of primes, is isomorphic to Autc(M) for some com-

putable structureM if and only if S is Σ03 (seeMorozov and Buzykaeva [272]).
The general case of arbitrary abelian groups is unresolved. Theorem 69
also implies that for every infinite computable Boolean algebra B, the group
Autc(B) is not computable, and the same is true for every decidable infinite
model of an ℵ0-categorical theory with a computable set of atomic formu-
las.
We can show that the group Autc(M) of a computable structureM is 0′′-
computable (folklore). This upper bound is sharp, as shown in the following
theorem due to Morozov.

Theorem 70 ([260]). For every Turing degree d ≤ 0′′, there exists a com-
putable structureM such that deg (D(Autc(M))) = d.
We may ask whether for various computableM, the group Autc(M) has
a degree of its isomorphism type. As we have seen earlier, this was the
case whenM is ù with equality. Nonetheless, Morozov [260] constructed a
computable structureM such that Autc(M) has no degree of its isomorphism
type. We may also ask which Turing degrees contain only groups isomorphic
to Autc(M) for some computableM. Morozov [263, 260] proved that this
collection of degrees is the singleton {0}.
Recently Harizanov, Morozov, and R. Miller [150] introduced another no-
tion in the study of Aut(M).

Definition 20 ([150]). The automorphism (Turing) degree spectrum of a
computable structureM, in symbols AutSp(M), is the set

{deg(f) : f ∈ Aut(M)− {1M}},

where 1M is the identity automorphism ofM.

Harizanov,Morozov, andR.Miller [150] showed that various collections of
Turing degrees, including many upper cones, can be realized as automorphism
degree spectra. LetM be a computable structure. If AutSp(M) is the upper
cone of degrees ≥ d, then d is hyperarithmetic. Harizanov, Morozov, and
R. Miller [150] showed that for any computable ordinal α, and any Turing
degree d with 0(α) ≤ d ≤ 0(α+1), the upper cone of degrees ≥ d forms an
automorphism spectrum. They also showed that there exists a computable
structure A the automorphism spectrum of which is the union of the upper
cones above each degree of an infinite antichain of Σ0n degrees for n ≥ 1.
The spectrum AutSp(M) is at most countable if and only if it contains only
hyperarithmetic degrees. Since for every f, g ∈ Aut(M) the composition fg
is also an automorphism, the automorphism degree spectrum cannot contain
exactly two incomparable degrees, as Harizanov, Morozov, and R. Miller
showed.
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Theorem 71 ([150]).

1. Let d0 and d1 be incomparable Turing degrees. Then no computable struc-
tureM has AutSp(M) = {d0, d1} or AutSp(M) = {0, d0, d1}.

2. There exist pairwise incomparable ∆02 Turing degrees d0, d1, d2, and
computable structures A and B such that AutSp(A) = {d0, d1, d2} and
AutSp(B) = {0, d0, d1, d2}.

It was shown in [150] that there exists a computable structure A such that
for every c.e. degree d, some computable copy ofA has automorphism degree
spectrum {d}. If 0(α) ≤ d ≤ 0(α+1) for some computable ordinal α, then there
exists a computable structure with automorphism degree spectrum {d}. A
total function f: ù → ù is said to be a Π01-function singleton if there exists a
computable tree T ⊆ ù<ù through which f is a unique infinite path. It was
proved in [150] that a Turing degree d contains a Π01-function singleton if and
only if {d} is the automorphism spectrum of some computable structure.
For a computable structureM from some well-known algebraic class of
structures, the typical question we might ask is: Given Aut(M), what can we
say about the isomorphism type ofM? Obtaining a satisfactory answer to this
question is usually a difficult task. The effective analogue of the question—
when M is computable and Aut(M) is replaced by Autc(M)—is not any
easier. In the case of computable Boolean algebras, Morozov [262] obtained
a positive partial result. By B ∼=c A we denote that B and A are computably
isomorphic.

Theorem 72 ([262]). Let A be an atomic decidable Boolean algebra. For
every computable Boolean algebra B, we have

(Autc(B) ∼= Autc(A))⇒ (B ∼=c A).
In contrast, Remmel [294] showed that for every computable Boolean alge-
braB, there exists C ∼= B such that everyf ∈ Autc(C)moves only finitelymany
atoms of C. It is also proven in [262] that there exist two decidable Boolean
algebras, B0 and B1, such that B0 ≇ B1 and Autc(B0) ∼= Autc(B1). Moro-
zov [262] also showed that there exists a computable Boolean algebra B, and
a Boolean algebra C having no computable copy, such that Aut(B) ∼= Aut(C).
In [57], Chubb, Harizanov, Morozov, Pingrey, and Ufferman investigated
the relationship between algebraic structures and their inverse semigroups
of partial automorphisms. An inverse semigroup is a semigroup where for
each element f there is a unique g so that gfg = g and fgf = f. For
a structure M, the authors considered the semigroup Ifin(M) of all finite
automorphisms, and, in the case of a computable structureM, the semigroup
of all partial computable automorphisms, Ipc(M). As usual, ≡ stands for
elementary equivalence of structures. In [57], it was shown that structures from
certain classes canbe recovered, up to isomorphismor elementary equivalence,
from these semigroups. For example, for all nontrivial countable equivalence
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structures A0 and A1, we have:
(i) (Ifin(A0) ∼= Ifin(A1))⇔ (A0 ∼= A1); and
(ii) (Ifin(A0) ≡ Ifin(A1))⇔ (A0 ≡ A1).

We call an equivalence structure (A,E) nontrivial ifE differs from the diagonal
relation {(a, a) : a ∈ A} and from the set A × A. It was shown in [57] that
for a nontrivial computable equivalence structure E0, there is a first-order
sentence ó in the language of inverse semigroups such that for any nontrivial
computable equivalence structure E1, we have

(Ipc(E1) |= ó)⇒ (E1 ∼=c E0).
The authors of [57] also considered partial orders, relatively complemented
distributive lattices, and Boolean algebras. It would be interesting to investi-
gate for other natural algebraic structures how structures themselves can be
recovered, up to isomorphism or elementary equivalence, from various inverse
semigroups of their partial automorphisms.
There are also interesting results about computable automorphisms of com-
putable linear orders. Schwartz obtained the following characterization of
computable linear orders containing dense intervals.

Theorem 73 ([302]). A computable linear order A contains a dense interval
if and only if card(Autc(L)) > 1 for every computable L such that L ∼= A.
In order to state the next result by Morozov and Truss [273] , we will first
introduce some notation. For a computable structureM and aTuring ideal I ,
let AutI (M) be the collection of all automorphisms ofM computable from
members of I . Let Q = (Q,≤).
Theorem 74 ([273]). For Turing ideals I and J we have:

(AutI (Q) ≦ AutJ (Q))⇔ (I ⊆ J ), and
(AutI (Q) ∼= AutJ (Q))⇔ (I = J ).

The proof uses techniques from the theory of ordered abelian groups
(see [115]). It is interesting to compare Theorem 74 with Theorem 64. The
next result of Morozov and Truss can be compared with Theorem 67.

Theorem 75 ([274]). There is a first-order sentence ô such that, up to isomor-
phism, the groupAutc(Q) is the onlymodel of ô amongall subgroupsofAutc(ù).
Lempp, McCoy, Morozov, and Solomon studied the algebraic properties
of Autc(Q) and compared them with those of Aut(Q). They obtained the
following result distinguishing Autc(Q) from Aut(Q).
Theorem 76 ([224]). The following three properties, known to be true for
Aut(Q), fail for Autc(Q):
(a) the group is divisible;
(b) every element is a commutator of itself with some other element; and
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(c) two elements are conjugate if and only if they have isomorphic orbital
structures.

Notmuch is knownabout effective automorphisms of computablemodules,
including vector spaces and abelian groups. Many algebraic difficulties arise in
the study of their automorphism groups. The following result about modules,
due to Morozov, is similar to Theorem 73.

Theorem 77 ([266]). For every computable division ring R, there exists a
computable copy of the moduleM =⊕

i∈ùR such thatAutc(M) contains only
multiplications by scalars fromR.
Further related results can be found in [217].

§7. Degree spectra of relations. One of the important questions in com-
putable model theory is how a specific property of a computable structure
may change if the structure is isomorphically transformed so that it remains
computable. A computable property of a computable structureA, which Ash
and Nerode [19] considered, is given by an additional computable relation R
on the domain ofA. (That is, R is not named in the language ofA.) Ash and
Nerode investigated syntactic conditions on A and R under which for every
isomorphism f from A onto a computable structure B, f(R) is c.e. Such
relations are called intrinsically c.e. on A. In general, we have the following
definition. Let P be a certain complexity class.
Definition 21 ([19]). An additional relation R on the domain of a com-
putable structureA is called intrinsically P onA if the image ofR under every
isomorphism from A to a computable structure belongs to P .
For example, the successor relation, and being an even number are not
intrinsically computable relations on (ù,<). Clearly, if A is a computably
stable structure, then every computable relation on its domain is intrinsically
computable.
If R is definable in A by a computable Σ1 formula with finitely many pa-
rameters, then R is intrinsically c.e. Ash and Nerode [19] proved that, under
a certain extra decidability condition on A and R, the relation R is intrin-
sically c.e. on A iff R is definable by a computable Σ1 formula with finitely
many parameters. The Ash–Nerode condition for an m-ary relation R says
that there is an algorithm, which determines for every existential formula
ø(x0, . . . , xm−1, y) and every c ∈ Alh(y), whether the following implication
holds for every a ∈ Am:

(A � ø(a, c))⇒ R(a).
Barker [23] extended this result by showing that for every computable ordinal
α, under certain additional decidability conditions on A, the relation R is
intrinsically Σ0α onA iffR is definable by a computable Σα formulawith finitely
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many parameters. For the relative notions, the effectiveness conditions are
not needed. Let P be a certain complexity class, which can be relativized,
such as that class of all Σ0α sets.

Definition 22. An additional relation R on the domain of a computable
structureA is called relatively intrinsicallyP onA if the image ofR under every
isomorphism from A to any structure B is P relative to the atomic diagram
of B.
The following equivalence is due toAsh,Knight,Manasse, and Slaman [10],
and independently Chisholm [50].

Theorem 78 ([10, 50]). Let A be a computable structure. A relation R on A
is relatively intrinsically Σ0α iff R is definable by a computable Σα formula with
finitely many parameters.

Goncharov [122] andManasse [230] gave examples of intrinsically c.e. rela-
tions on computable structures, which are not relatively intrinsically c.e. This
result was lifted to higher levels in the hyperarithmetic hierarchy by Gon-
charov, Harizanov, Knight, McCoy, R. Miller, and Solomon for successor
ordinals [116], and by Chisholm, Fokina, Goncharov, Harizanov, Knight,
and Quinn for limit ordinals [51].

Theorem 79 ([116, 51]). For every computable ordinal α, there is a com-
putable structureAwith an intrinsicallyΣ0α relationR such thatR is not definable
by a computable Σα formula with finitely many parameters.

In addition to considering the complexity of relations on computable struc-
tures within hyperarithmetic hierarchy, we can also consider their degrees,
such as Turing degrees or strong degrees. Harizanov introduced the following
notion.

Definition 23 ([151]). The Turing degree spectrum of R on A, in symbols
DgSpA(R), is the set of all Turing degrees of the images of R under all
isomorphisms from A onto computable structures.
If for some isomorphism f from A to a computable structure, we have
X = f(R) and x = deg(X ), then we say that x is realized in DgSpA(R)
via X , or via f. Uncountable degree spectra of relations were studied by
Harizanov [153, 155], and Ash, Cholak, and Knight [13]. In particular, they
showed independently that if every Turing degree ≤ 0′′ can be realized in
DgSpA(R) via an isomorphism of the same Turing degree as its image of R,
thenDgSpA(R) contains every Turing degree. In [53], the authors investigated
the spectra of relations on computable structures under strong reducibilities
such as weak truth-table (wtt) reducibility and truth-table (tt) reducibility.
In [152], Harizanov studied when every c.e. degree can be obtained in
DgSpA(R) via an isomorphism of the same degree as its image of R. Ash,
Cholak, and Knight [13] lifted her result to arbitrary α-c.e. degrees, where α
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is a computable ordinal, in Ershov’s difference hierarchy. For example, the
degree spectrum of the successor relation on (ù,≤) contains all c.e. degrees,
and the same holds for the set of all even numbers. The degree spectrum
of the set of algebraic elements in an algebraically closed field of infinite
transcendence degree contains all c.e. Turing degrees.
One of the general results by Harizanov about DgSpA(R) containing
all c.e. degrees is the following theorem, which requires extra effectiveness
condition—it is enough that the existential diagram of (A, R) is computable.
Theorem 80 ([152]). LetA be a computable structure, and letR be a relation
that is intrinsically c.e. on A, while ¬R is not. Then, under a certain extra
decidability condition, for any c.e. degree d, we have d ∈ DgSpA(R).
Ash and Knight [16] generalized the previous theorem. Their generaliza-
tion involves degrees that are coarser than Turing degrees. In the following
definition we will use the symbol ∆0α to denote a complete ∆

0
α set.

Definition 24 ([16]). (i) A ≤∆0α B iff A ≤T B ⊕ ∆0α .
(ii) A ≡∆0α B iff (A ≤∆0α B and B ≤∆0α A).
(iii) The equivalence classes under ≡∆0α are called α-degrees.

Note that≤∆01 is the same as ≤T .

Theorem 81 ([16]). Let A be a computable structure, and let R be a relation
that is not intrinsically ∆0α on A. Then, under certain extra effectiveness condi-
tions, for any Σ0α set C , there is an isomorphism f from A onto a computable
copy with f(R) ≡∆0α C .
Ash and Knight also showed that it is not possible to substitute Turing
degrees for α-degrees. In [15], they produced examples of structures A and
relations R, satisfying a great deal of effectiveness, in which certain Σ0α Turing
degrees, in particular, minimal degrees, are impossible for the image of R.
Hirschfeldt and White [175] constructed a family of relations on computable
structures, the degrees of which coincide with the levels of the hyperarithmetic
hierarchy. Their examples are built up from back-and-forth trees, which
explicitly code the alternations of quantifiers.
Using Goncharov’s result from the theory of numberings [126], we can
show that there is a computable non-intrinsically c.e. relation R on a com-
putable structure A such that DgSpA(R) = {0, d}, where d ≤ 0′′ but d � 0′
(see [152]). Harizanov [154] showed that there is a two-element degree
spectrum DgSpA(R) = {0, d}, such that 0 < d ≤ 0′ where d cannot be
realized via a c.e. set. Goncharov and Khoussainov [138], and Khous-
sainov and Shore [205] proved that there is a two-element degree spectrum
DgSpA(R) = {0, c} such that c is a nonzero degree realized via a c.e. set.
Khoussainov and Shore broadly generalized this result.
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Theorem 82 ([205]). Let (P,�) be a computable partially ordered set. There
are a computable structureA and a computable unary relation R on its domain
such that (DgSpA(R),≤) ∼= (P,�) and every degree in DgSpA(R) is realized
via a c.e. set.

For some familiar relations on computable structures, their Turing degree
spectra exhibit the dichotomy: either singletons or infinite. Harizanov [152]
established that if for a non-intrinsically c.e. relationR onA, the Ash–Nerode
decidability condition holds, then DgSpA(R) must be infinite. Hirschfeldt
[170] gave a sufficient condition for a relation to have infinite degree spec-
trum. Applying this condition to linear orders and using the proof of a
result of Moses [275], Hirschfeldt established that a computable relation on
a computable linear order is either intrinsically computable or has an infinite
Turing degree spectrum. Downey, Goncharov, and Hirschfeldt proved the
same dichotomy for relations on Boolean algebras.

Theorem 83 ([82]). A computable relation on a computable Boolean algebra
is either intrinsically computable or has infinite Turing degree spectrum.

A similar question can be asked for computable relations on other classes of
structures such as computable abelian groups. Another interesting question
from [82] is whether the degree spectrum of an intrinsically ∆02 relation on a
computable linear order is always a singleton or infinite.
Degree spectra have also been investigated for specific important relations
on natural classes of structures. One such relation is the successor relation S
on a computable linear order L. There are two known examples of singleton
degree spectra of the successor relation. If L has only finitely many successor
pairs, then the order is computably categorical, hence the successor relation is
intrinsically computable. Downey andMoses [85] constructed a linear orderL
having an intrinsically complete successor relation, that is, DgSpL(S) = {0′}.
It was a long-standing open question to investigate upward closure in c.e.
degrees of the degree spectrum of the successor relation in computable linear
orders. Harizanov, Chubb, and Frolov [56] showed that if A is a computable
linear order with domain A where for all x ∈ A there is a successor pair
(a, b) in A with x < a, then the degree spectrum of the successor relation
of A is closed upward in the c.e. Turing degrees. As a consequence, they
established that for every c.e. Turing degree b, the upper cone of c.e. Turing
degrees determined by b is the degree spectrum of the successor relation of
some computable linear order. Downey, Lempp, and Wu [78] established the
positive result in full generality by developing a new method of constructing
∆03 isomorphisms. Their proof uses a result from [56].

Theorem 84 ([78]). If a computable linear order has infinitelymany successor
pairs, then the degree spectrum of the successor relation is closed upward in the
c.e. Turing degrees.
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In [320], Soskov established that a ∆11 relation on computable A, which is
invariant under automorphisms ofA, is definable inA by a computable infini-
tary formula with no parameters. This led to the following characterization
of intrinsically ∆11 relations.

Theorem 85 ([320]). For a computable structure A, and a relation R on A,
the following are equivalent:
(i) R is intrinsically ∆11 onA;
(ii) R is relatively intrinsically ∆11 on A; and
(iii) R is definable inA by a computable infinitary formula with finitely many
parameters.

In the following theorem characterizing intrinsically Π11 relations, Soskov
[321] established the equivalence (ii) ⇔ (iii), while (i) ⇔ (ii) was established
in [137].

Theorem 86 ([321, 137]). For a computable structureA and relationR onA,
the following are equivalent:
(i) R is intrinsically Π11 onA;
(ii) R is relatively intrinsically Π11 on A; and
(iii) R is definable inA by aΠ11 disjunction of computable infinitary formulas
with finitely many parameters.

Goncharov,Harizanov,Knight, andShore [137] considered a general family
of examples of intrinsically Π11 relations arising in computable structures of
Scott rank ùCK1 + 1. A Harrison order is a computable linear order of type
ùCK1 (1 + ç). Harrison [162] showed that such an order exists. The initial
segment of this order of type ùCK1 is intrinsically Π11 since it is defined by the
disjunction of computable infinitary formulas saying that the interval to the
left of x has order type α, for computable ordinals α. A Harrison Boolean
algebra is a computable Boolean algebra of type I (ùCK1 (1 + ç)), where for an
order L, the interval algebra I (L) is the algebra generated, under finite union,
by the half-open intervals [a, b), (−∞, b), [a,∞), with endpoints inL. The set
of superatomic elements of this Boolean algebra is intrinsicallyΠ11 . AHarrison
group is a countable abelian p-group G such that ë(G) = ùCK1 , every element
in its Ulm sequence (uα(G))α<ùCK1 is ∞, and the divisible part has infinite
dimension. Recall that theUlm subgroupsGα are defined byGα = pùαG , and
uα(G) =def dimZp Pα(G)/Pα+1(G), where Pα(G) = Gα ∩ {x ∈ G : px = 0}.
The set of elements of a Harrison group, which have computable ordinal
heights, is intrinsically Π11. It is the complement of the divisible part. By a
path through Kleene’s O we mean a subset ofO that is linearly ordered under
<O and includes a notation for every computable ordinal.

Theorem 87 ([137]). The following sets are equal:

1. the set of Turing degrees ofΠ11 paths throughO;
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2. the set of Turing degrees of left-most paths of computable trees T ⊆ ù<ù
such that T has a path, but no hyperarithmetic path;

3. the set of Turing degrees of maximal well-ordered initial segments of
Harrison orders;

4. the set of Turing degrees of superatomic parts of Harrison Boolean alge-
bras; and

5. the set of Turing degrees of divisible parts of Harrison groups.

For certain types of structures, there is a close connection between the
notions of degree spectra of structures and of relations. Harizanov and
R. Miller [149] defined a computable structure U to be spectrally universal
for a theory T if for every automorphically nontrivial countable model A
of T , there is an embedding f: A → U such that A as a structure, has the
same degree spectrum as f(A), as a relation on the domain of U . Spectrally
universal structures investigated in [149] are the countable dense linear order
and the random graph. Both are Fraı̈ssé limits. This led Csima, Harizanov,
R. Miller, and Montalbán to develop the theory of computable Fraı̈ssé limits
in [62]. They gave a sufficient condition for certain Fraı̈ssé limits to be spec-
trally universal, which they used to show that the countable atomless Boolean
algebra is spectrally universal.
For syntactic characterizations of relations having Post-type properties on
structures, or their degree-theoretic complexity see [166, 167, 18, 145, 135,
146, 136].

§8. Families of relations on a structure. Many important algebraic prop-
erties can be investigated by considering natural families of relations on a
structure. For example, for a vector space V we can consider the family if its
bases:

B(V ) = {X ⊆ V : X is a basis of V }.

For an orderable field F we can consider the set of all linear orders on its
domain, which are invariant under the field operations:

O(F ) = {R ⊆ F × F : R is an order on F }.

Such a family of relations does not necessarily have a computable member
even when the structure is computable. Mal’cev [229] showed that there ex-
ists a computable vector space without a computable basis. Metakides and
Nerode [240] and Ershov [90] showed that there exists a computable orderable
field that cannot be computably ordered. We could ask for a sufficient condi-
tion on a family of relations on a computable structure to have a computable
member. More generally, we may ask what the collection of Turing degrees of
its members is.
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Definition 25 ([70]). Given a family of relationsR on a computable struc-
tureM, define

DgSp(R) = {deg(R) : R ∈ R}.
In the next definition we will be computing all relations simultaneously
(uniformly).

Definition 26. Let A be a computable structure, and let R = (Ri )i∈I be a
family of relations on A, where l(i) is the arity of Ri . Define

DgSp(R;A) = deg{a ⊆ Al(i) : A |= Ri(a), i ∈ I }.
In many interesting examples, the index set I and the arities of relations are
computable. The previous two definitions are dependent on a given presen-
tation of a structure. We could let the definitions range over all computable
copies of A. However, this approach is not common.
Let us consider the problem of computing a generating set (or a basis) of a
given computable structure. The definition of a basis depends on the class of
structures. The study of the problem of computing a basis in several classical
algebraic examples provides a natural link between Definition 26 and Defi-
nition 25. More specifically, to build a basis stage-by-stage (Definition 25),
one usually needs a corresponding notion of independence (Definition 26).
Consider the following example.

Example. Let V be a countable vector space of infinite dimension. Define
the following sets of relations on V .

1. For every i ∈ ù, and any x0, . . . , xi ∈ V , we set Pi(x0, . . . , xi) = 1 if
and only if x0, . . . , xi are linearly independent.

2. LetB be the collection ofmaximal linearly independent sets (bases) inV .
If P = (Pi )i∈ù is uniformly computable, then we say that V has an algorithm
for linear independence.

Theorem 88 (folklore; see [229, 239]). Every computable vector space over
a computable field has a 0′-computable basis, and this bound is sharp.

Let us now consider another natural example from algebra.

Example. Let F be a countable algebraically closed field of infinite tran-
scendence degree. Define the following sets of relations on F .

1. For every i ∈ ù, and any a0, . . . , ai ∈ F , we setRi(a1, . . . , ai) = 1 if and
only if, a1, . . . , ai are algebraically independent.

2. Let A be the collection of maximal algebraically independent subsets
of F .

If R = (Ri)i∈ù is uniformly computable in F , then F is said to have an
algorithm for algebraic independence.
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Theorem 89 (folklore; see [107, 240, 288]). The algebraic closure of Q(xi :
i ∈ ù) has a 0′-maximal algebraically independent set, and this bound is sharp.
It is clear that independence can be formalized using families of relations
as in Definition 26, and the collection of bases should be studied according to
Definition 25. It is important to observe that in the context of vector spaces
and algebraically closed fields, the existence of a generating set is equivalent
to the problem of computable categoricity relative to an oracle. The same can
be said about many other natural examples.
A number of researchers investigated complexity of independent sets and
other subsets and subspaces of c.e. vector spaces and c.e. algebraically closed
fields (see, for example, [239, 184, 290, 313, 241, 71]). In many of their results
the operations (vector addition and scalar multiplication, or field operations,
respectively) play no direct role. For instance, in the proofs of Theorems 88
and 89 only the phenomenon of independence occurs. In fact, Metakides
and Nerode [241] initiated the study of the effective content of abstract in-
dependence relations (Steinitz closure systems). For an extended survey of
the results about computable Steinitz closure systems, see the paper [86] by
Downey and Remmel.
Wewill nowdiscuss recent results about bases of various structures. Downey
and Melnikov [80] studied free modules over localizations of integers.

Theorem 90 ([80]). Let S ⊆ ù be a c.e. set of primes.
(i) Every computable free module F(S) over the localization of Z by S has
a Σ03 (actually, Π

0
2 in S) set of generators.

(ii) Every computable copy of F(S) has a Σ02 set of generators if and only if
the complement of S is semi-low.

The theorem can be equivalently re-formulated in terms of computable
categoricity relative to an oracle. The corresponding analogue of linear inde-
pendence for free modules of this kind is S-independence, which is a general-
ization of the classical notion of p-independence (see [80]). As a consequence
of Theorem 90 with S = ∅, it follows that every free abelian group has a Π01
generating set.
Algebraic structure becomes more complex in the case of free nonabelian
groups. Relatively recently, Sela in a series of papers [303, 304, 305, 306, 307,
308, 309] gave a positive solution to the problem of elementary equivalence
of free groups of different finite ranks greater than 1, posed by Tarski in
the 1940s. (See also Kharlampovich and Myasnikov [193].) Inspired by
this result, Carson, Harizanov, Knight, Lange, McCoy, Morozov, Safranski,
Quinn, andWallbaum [44], andMcCoy andWallbaum [234] investigated free
groups in the context of computable model theory. Let F∞ be the free group
of rank ℵ0.
Theorem 91 ([44, 234]). Every computable copy of F∞ has a Π02 basis, and
the result cannot be improved to Σ02.
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The proof of the theorem uses deep results in algebra. The corresponding
notion of independence iswhat is called primitiveness in every finitely generated
subgroup (see [44, 234]).
In general, not every family of unary relations (Definition 25) has a hyper-
arithmetic “notion of independence” (Definition 26). For example, consider
the collection of paths on T ⊂ ù<ù , where T codes a Σ11-complete set. In
contrast, we have seen that natural structures well-understood in algebra tend
to have arithmetic bases. Thus, we can ask whether there is a natural structure
(such as a ring, a module, or a group) for which finding a generating set is not
(hyper)arithmetic. A possible candidate is the pure transcendental ring over
the rationals, Q[xi : i ∈ ù]. Does every computable copy of Q[xi : i ∈ ù]
have a (hyper)arithmetic basis? Describing automorphism orbits of genera-
tors in Q[xi : i ∈ ù] is a long-standing open problem in algebra. There has
been some progress in this direction; see the recent paper by Shestakov and
Umirbaev [312].
We will now discuss some old and recent results on orders on orderable
groups and fields. Recall that a left order on a group G = (G, ·) is a linear
order < of its elements, which is left-invariant under the group operation:

(∀x, y)(∀z)[x < y ⇒ z · x < z · y].

A right order is defined similarly. A bi-order (or simply order) is invariant
under both left and right multiplication. The definition of an order for a field
is similar. Clearly, every left order on an abelian group is a bi-order. Every
left order <l on G induces a right order <r on G as follows:

a <r b ⇔ b−1 <l a−1.

It is well-known that an abelian group is orderable if and only if it is torsion-
free. A field is orderable exactly when it is formally real (see [110]). As for
fields, in the case of computable orderable groups, the effective analogue of
the classical result fails. Downey and Kurtz [84] showed that there exists
a computable group isomorphic to Zù =

⊕
i∈ù Z, which does not have a

computable order. On the other hand, Dobritsa [72] previously showed that
every computable, torsion-free, abelian group is isomorphic to a computable
group with a computable order.
For a group G, by LO(G) we denote the set of all left orders on G, and
by BiO(G) the set of all bi-orders on G. There is a natural topology on
these sets (when nonempty), making the topological spaces compact, even
when G is a semigroup instead of a group, or just a structure with a single
binary operation (see [67]). In some cases this space is homeomorphic to
the Cantor set. Sikora [314] established that the space BiO(Zn) for n > 1 is
homeomorphic to the Cantor set. Dabkowska [69] established that the space
BiO(Zù) is homeomorphic to the Cantor set. (Her result can also be obtained
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from [84].) Solomon [319] obtained the following results about Turing degrees
of orders on abelian groups.

Theorem 92 ([319]).

1. A computable, torsion-free, abelian group of finite rank greater than 1 has
an order in every Turing degree.

2. A computable, torsion-free, abelian group of infinite rank has an order in
every Turing degree d ≥ 0′.

3. Let n > 1. A computable, torsion-free, properly n-step nilpotent group has
an order in every Turing degree d ≥ 0(n).

The positive cone of an order< on a group G isP = {a ∈ G : e ≤ a}, where
e ∈ G is the identity element. The negative cone is P−1 = {a ∈ G : a ≤ e}.
Clearly, a ≤ b iff a−1b ∈ P. Hence, we can effectively pass from binary
relations (orders) to unary relations (positive cones) and vice versa. We can
easily verify that if P ⊆ G is a subsemigroup of G (i.e., PP ⊆ P), which
satisfies P ∩ P−1 = {e}, then P defines a left order on G if and only if P is
total (i.e., P ∪P−1 = G). Moreover, P defines a bi-order on G if, in addition,
P is a normal subsemigroup (i.e., g−1Pg ⊆ P for every g ∈ G). Denote by
C(G) the set of all positive cones of orders on G. Clearly, DgSp(BiO(G)) =
{deg(C ) : C ∈ C(G)}.
Solomon [318] established that for every orderable computable group G,
there is a computable binary tree T and a Turing degree preserving bijection
from C(G) to the set of all infinite paths of T . Hence C(G) corresponds to
a Π01 class, and, by the low basis theorem, BiO(G) contains an order of low
Turing degree. Previously, Metakides and Nerode [240] established the same
results for computable orderable fields. Moreover, they showed that the sets
of orders of computable orderable fields are in exact correspondence to the
collections of Π01 subsets of 2

ù.

Theorem 93 ([240]). For every nonempty Π01 class P, there is a computable
orderable field F and a Turing degree preserving bijection f: P→ C(F).
The proof is based on a result byCraven [60] that for every Boolean topolog-
ical space T , there is a formally real field F such that C(F) is homeomorphic
to T . Many corollaries about degree spectra of orders on fields follow from
Theorem 93. It is not hard to see that the situation is different for torsion-free
abelian groups. Solomon [318], using a result by Jockusch and Soare [179],
showed that there is a Π01 class P such that for any computable, torsion free,
abelian group G, we have {deg(f) : f ∈ P} 6= DgSp(BiO(G)).
More recently, Dabkowska, Dabkowski, Harizanov, and Togha [70] studied
topological and computability-theoretic properties of left orders and bi-orders
on (not necessarily abelian) groups. They obtained general sufficient condi-
tions for the degree spectra of orders on groups to contain upper cones of
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Turing degrees. As a corollary they established the following result about the
free groups Fn of rank n.

Theorem 94 ([70]). Every computable copy of Fn, where n > 1, has an order
in every Turing degree.

Sikora [314] conjectured that BiO(Fn) for n > 1 is homeomorphic to the
Cantor set. The conjecture still remains open. It was shown in [148] that
there is a computable copy of F∞ with no computable left order, and hence
the space BiO(F∞) (as well as LO(F∞)) is homeomorphic to the Cantor set.
Kach, Lange, and Solomon [182] constructed computable, torsion-free,
abelian groups such that the degree spectra of their orders are not upward
closed. The groups are isomorphic to effectively completely decomposable
groups. N. Khisamiev and Krykpaeva [198] defined a computable, infinite-
rank, torsion-free, abelian group H to be effectively completely decomposable
if there is a uniformly computable sequence of rank one groups Hi , i ∈ ù,
such thatH is equal to ⊕i∈ùHi .
Theorem 95 ([182]). Let H be a computable and effectively completely de-
composable group. Then there is a computable copy G of H such that
DgSp(BiO(G)) contains 0, but is not upward closed.
More precisely, Kach, Lange, and Solomon showed that there is a non-
computable, c.e. set C such that G has exactly two computable orders, and
every C -computable order on G is computable. On the other hand, since
H is effectively completely decomposable, it has a computable basis formed
by choosing a nonzero element hi from every Hi . Hence DgSp(BiO(H))
contains every Turing degree, and G is not effectively completely decom-
posable. Kach, Lange, and Solomon [182] conjectured that the conclusion
of Theorem 95 holds for all computable, infinite-rank, torsion-free, abelian
groupsH.
Natural relations in partial orders are their chains and antichains. Complex-
ity of infinite chains and antichains in computable partial orders was studied
by Herrmann [163] and Harizanov, Knight, and Jockusch [147]. It follows
from an effective version of Ramsey’s theorem for pairs, due to Jockusch
[178], that a computable partial order of ù has either an infinite ∆02 chain,
or an infinite ∆02 antichain, or else both an infinite Π

0
2 chain and an infi-

nite Π02 antichain. On the other hand, Herrmann [163] showed that there
is a computable partial order of ù with no infinite Σ02 chain or antichain.
Harizanov, Knight, and Jockusch [147] showed that there is a computable
partial order with an infinite chain but none that is Σ11 or Π

1
1, and they ob-

tained the analogous result for antichains. They also showed that there is a
computably axiomatizable theory T of partial orders such that T has a com-
putable model with arbitrarily long finite chains but no computable model
with an infinite chain. They also established the corresponding result for
antichains.
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§9. Classes of structures and equivalence relations. Our goal is to measure
the complexity of classes of computable structures and equivalence relations
on these classes. More precisely, we want to know how complex the answers
to the following types of questions are. Does a computable structure belong to
a particular class of structures with fixed algebraic, model-theoretic, or algo-
rithmic properties (e.g., a class of groups, uncountably categorical structures,
decidable structures, etc.)? Are two structures from such a class isomorphic,
computably isomorphic, bi-embeddable, etc.? We are looking for a criterion
that will allow us to say whether such questions have “nice” answers.
There are many papers investigating the complexity of classes of count-
able structures. There is earlier work in descriptive set theory [248, 249]
investigating subsets of the Polish space of structures with universe ù for a
given countable relational language. Concerning the possible complexity (in
the noneffective Borel hierarchy) of the set of copies of a given structure,
D. Miller [249] showed that if this set is ∆0α+1, then it is d -Σ

0
α . In [248],

A. Miller showed that this set cannot be properly Σ02. There are also examples
illustrating other possibilities.
The main issue here is to find an optimal definition of the class of structures
under investigation. This often requires the use of various internal properties
of the structures in the class. After a reasonable definition is found, it is
necessary to prove its strictness. Usually, this is done by proving completeness
in some complexity class.
In the case of equivalence relations, the study of Borel reducibility has
developed into a rich area of descriptive set theory. The notion of Borel re-
ducibility allows us to compare the complexity of equivalence relations on
Polish spaces (see [190, 111]). In particular, natural equivalence relations on
classes of countable structures, such as isomorphism and bi-embeddability,
have been widely studied; for example, see [105, 176, 106]. An effective ver-
sion of this study was introduced by Calvert, Cummins, Knight, and S. Miller
(Quinn) [34], and Knight, S. Miller (Quinn), and Vanden Boom [211]. The
main idea is that the complexity of the isomorphism relation on various classes
of countable structures can be measured using the effective transformations.
The introduced c-embeddings and tc-embeddings are based on uniform enu-
meration reducibility and uniform Turing reducibility, respectively. The main
advantage of this approach is that it allows distinctions among classes with
countably many isomorphism types.
In computable model theory, we may state our goal as follows. Let K be a
class of structures. We denote by K c the set of computable structures in K .
A computable characterization of K should separate computable structures
in K from all other structures (those not in K , or noncomputable ones). A
computable classification forK up to an equivalence relationE (isomorphism,
computable isomorphism, etc.) should determine each computable element,
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up to the equivalence E, in terms of relatively simple invariants. In [140],
Goncharov and Knight presented three possible approaches to the study of
computable characterizations of classes of structures.
Within the framework of the first approach, we say that K has a com-
putable characterization ifK c is the set of computable models of a computable
infinitary sentence.

Proposition 1. (i) The class of linear orders can be characterized by a single
first-order sentence.
(ii) The class of abelian p-groups is characterized by a single computableΠ2
sentence.
(iii) The classes of well orders and reduced abelian p-groups cannot be char-
acterized by single computable infinitary sentences.

Furthermore, we say that there is a computable classification for K if there
is a computable bound on the ranks of elements of K c . By a computable rank
Rc(A) of a structure A we mean the least ordinal α such that for all tuples a
and b in A, of the same length, if for all â < α, all computable Πâ formulas

that true of a are also true of b, then there is an automorphism of A taking a
to b. For example, the computable rank of a vector space over Q is 1. There
is no computable bound on computable ranks of linear orders and abelian
p-groups. The computable rank is not the same as the Scott rank. However,
for a hyperarithmetic structure, its computable rank is a computable ordinal
just in case its Scott rank is computable (see [140]). If A is hyperarithmetic,
then Rc(A) ≤ ùCK1 .
The second approach involves the notion of an index set. A computable
index for a structure A is a number e such that D(A) = We , where D(A) is
the atomic diagram of A. We denote the structure with index e by Ae . For
a class K of structures, the index set I (K) is the set of computable indices of
members of K c :

I (K) = {e : We = D(A) ∧ A ∈ K}.
For an equivalence relation E on a class K , we define

I (E,K) = {(m, n) : m, n ∈ I (K) ∧AmEAn}.
Within this approach, we say thatK has a computable characterization if I (K)
is hyperarithmetic. The class K has a computable classification up to E if
I (E,K) is hyperarithmetic.
The first and the second approach are known to be equivalent [140]. In
fact, we do not know a better way to estimate the complexity of an index set
than by giving a description by a computable infinitary formula.

Proposition 2 ([140]). (i) For the following classes K , the index set I (K)
is Π02:

(a) linear orders,
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(b) Boolean algebras,
(c) abelian p-groups, and
(d) vector spaces over Q.
(ii) (Kleene, Spector.) For the following classes K , the index set I (K) is not
hyperarithmetic:

(a) well-orders,
(b) superatomic Boolean algebras, and
(c) reduced abelian p-groups.

In the next theorem, the calculations of the complexity of index sets for
classes of structures with interesting model-theoretic properties are due to
White [333], Calvert, Fokina, Goncharov, Knight, Kudinov, Morozov, and
Puzarenko [35], Fokina [99], and Pavlovskii [282]. In (v), Σ03− Σ03 denotes the
difference of two Σ03 sets.

Theorem 96.

(i) ([333, 282]) The index set of computable prime models is an m-complete
Π0ù+2 set.

(ii) ([333]) The index set of computable homogeneousmodels is anm-complete
Π0ù+2 set.

(iii) ([282]) The index set of structures with uncountably categorical theories is
a ∆0ù-hard Σ

0
ù+1 set.

(iv) ([282]) The index set of structures with countably categorical theories is a
∆0ù-hardΠ

0
ù+2 set.

(v) ([99]) The index set of structures with decidable countably categorical
theories is an m-complete Σ03 − Σ03 set.

(vi) ([35]) (a) The index set of computable structures with noncomputable
Scott ranks is m-complete Σ11.
(b) The index set of structures with the Scott rank ùCK1 is m-complete
Π02 relative to Kleene’s O.
(c) The index set of structureswith theScott rankùCK1 +1 ism-complete
Σ02 relative to Kleene’s O.

The index sets for structures with specific algorithmic properties were also
studied by White [333], Fokina [100], and Downey, Kach, Lempp, and Turet-
sky [83].

Theorem 97. (i) ([100])The index set of decidable structures isΣ03-complete.
(ii) ([333]) The index set of hyperarithmetically categorical structures is Π11-
complete.

(iii) ([83]) The index set of relatively computably categorical structures is Σ03-
complete.

The following result of Downey, Kach, Lempp, Lewis, Montalbán, and
Turetsky resolves an important old problem.
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Theorem 98 ([76]). The index set of computably categorical structures is
Π11-complete.

The structures constructed to establish this result are computable trees of a
special kind. It would be worthwhile to calculate the complexity of the index
sets of other classes of computable structures having interesting algebraic,
model-theoretic, or algorithmic properties.
The third approach of Goncharov and Knight [140] to computable charac-
terization of classes of structures involves the notion of enumeration. A class
of structures has a good characterization if all its structures are represented
in the list, up to isomorphism or some other equivalence relation. A good
classification of the class would mean listing each equivalence class only once.

Definition 27. (i) An enumeration ofK c/E is a sequence (Mn)n∈ù rep-
resenting all E-equivalence classes in K c .

(ii) A Friedberg enumeration of K c/E is an enumeration in which every
E-equivalence class is represented only once.

(iii) An enumeration is ∆0α-computable if there is a ∆
0
α-computable sequence

of computable indices for the structures.

We say thatK has a computable characterization if there is a hyperarithmetic
enumeration ofK c/ ∼=. We say thatK has a computable classification up to E
if there is a hyperarithmetic Friedberg enumeration ofK c/E. It is known that
this approach is not equivalent to the previous two approaches, but is only
implied by them. Recall that a Harrison order is a computable linear order of
type ùCK1 (1 + ç).

Proposition 3 ([140]). Consider the classK consisting of copies of the Har-
rison order and of the linear orders of rank at most ù. Then K c/ ∼= has a
hyperarithmetic Friedberg enumeration, but the index set I (K) is not hyper-
arithmetic.

We will now focus on the classification problems up to important equiva-
lence relations. Themost interesting cases are isomorphism, bi-embeddability,
and isomorphism of bounded algorithmic complexity. Possible ways to com-
pare the complexity of various equivalence relations are:

1. comparison among sets; and
2. comparison among equivalence relations.

The former case was discussed above. It corresponds to the second approach
from [140]. Within this approach, we usually prove m-completeness among
sets in some complexity class. There has been quite a lot of work on the iso-
morphism problem for various classes of computable structures byGoncharov
and Knight [140], Calvert [29, 30, 31], and Calvert, Harizanov, Knight, and
S. Miller (Quinn) [40].

Theorem 99. (i) ([30]) The isomorphism problem for computable vector
spaces over Q is m-complete amongΠ03 sets.
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(ii) ([30]) The isomorphism problem for torsion-free abelian groups of finite
characteristic is m-complete among Σ03 sets.

(iii) ([140]) (a) The isomorphism problem for abelian p-groups is m-complete
among Σ11 sets.
(b) The isomorphism problem for trees is m-complete among Σ11 sets.

Recently, Carson, Fokina, Harizanov, Knight, Safranski, Quinn, andWall-
baum initiated the study of the computable embedding problem. In [43], they
investigated the relation between the isomorphism problem and the embed-
ding problem for some well-known classes of structures. The isomorphism
problem and the embedding problem were compared as sets, that is, using the
standardm-reducibility. While for some classes of structures the two problems
have the same complexity, for other classes the isomorphism problem is more
complicated than the embedding problem, or vice versa.
Further comparison of complexity of equivalence relations was done using
the 2-dimensional versions of reducibilities. This approach can be seen as
an analogue of investigation done in descriptive set theory. Recall that in
descriptive set theory, two equivalence relations, E and F , on Borel classes K
and L of structures, respectively, can be compared using Borel reducibility. In
the computable case, instead of arbitrary invariant Borel classes of countable
structures, we consider classes of computable structures with hyperarithmetic
index sets. In other words, we consider classes consisting of computable mod-
els of computable infinitary sentences. As mentioned above, this corresponds
to a “nice” characterization of a class.
A straightforward analogue of the Borel reducibility is the hyperarithmetic
reducibility.

Definition 28. For equivalence relations E1, E2 on (hyperarithmetic sub-
sets of) ù, we say that E1 is h-reducible to E2, in symbols E1 ≤h E2, if there is
a hyperarithmetic function f such that for all x, y,

x E1 y ⇔ f(x) E2 f(y).

Astronger reducibilitywouldbea 2-dimensional versionof them-reducibility.
This reducibility is traditionally used in the general study of equivalence rela-
tions on ù. It was introduced by Ershov in [91] where he studied properties
of numberings. Later it was used, for example, in [27, 112, 59, 8] and denoted
simply by ≤. As sometimes we need to emphasize the difference between m-
reducibility and h-reducibility, wewill denote the reducibility via a computable
function by≤m, specifying when necessary that we consider the 2-dimensional
version of m-reducibility among relations. When the results hold for both h-
reducibility and m-reducibility we will use the symbol ≤.

Definition 29. LetE1, E2 be equivalence relations on hyperarithmetic sub-
sets X,Y ⊆ ù, respectively. The relation E1 is m-reducible to E2, in symbols
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E1 ≤m E2, iff there exists a partial computable function f with X ⊆ dom(f)
and Y ⊆ f(X ) such that for all x, y ∈ X ,

x E1 y ⇔ f(x) E2 f(y).
Each notion of reducibility generates the corresponding notion of com-
pleteness.

Definition 30. A relation E on a hyperarithmetic subset of ù is an h-
complete Σ11 equivalence relation, or m-complete Σ

1
1 equivalence relation, if E

is Σ11 and every Σ
1
1 equivalence relation E1 on a hyperarithmetic subset of ù is

h-reducible to E, or m-reducible to E, respectively.

We use the previous definitions to compare equivalence relations on classes
of computable structures. Recall that each such relation E on a class K has
the index set I (E,K). We make no distinction between E and I (E,K) in the
following sense. If E1 is an arbitrary equivalence relation on ù, then we say
that E1 h-reduces to E, or m-reduces to E, iff there exists a hyperarithmetic,
or computable, respectively, sequence of computable structures {Ax}x∈ù from
K such that for all x, y, we have x E1 y iff Ax E Ay . (This is equivalent to
E1 ≤h I (E,K) orE1 ≤m I (E,K) in the sense ofDefinitions 28 and 29.) From
now on we will write ≤ to denote either of ≤h , ≤m. We will use the terms
“reduces,” “complete,” etc. for the corresponding notion of reducibility.
The following result is due to Fokina and Friedman.

Proposition 4 ([101]). There is a class K of structures with hyperarithmetic
index set such that the bi-embeddability relation on K c is complete among Σ11
equivalence relations.

This result corresponds to the analogous result in descriptive set theory
due to S. Friedman and Motto Ros [106]. However, the theory of Σ11 equiv-
alence relations on ù under ≤-reducibility behaves very differently from the
theory of Borel equivalence relations on Polish spaces. In particular, Fokina,
S. Friedman, Harizanov, Knight, McCoy, andMontalbán [96] established the
following completeness result.

Theorem 100 ([96]). The isomorphismof computable graphs is completewith
respect to the chosen effective reducibility in the context of all Σ11 equivalence
relations on ù.

This is false in the context of countable structures and Borel reducibility
since Kechris and Louveau [191] showed that there are examples of Borel
equivalence relations that are not Borel-reducible to isomorphism of graphs.
Moreover, the authors of [96] proved that the isomorphism relation on com-
putable torsion abelian groups is complete among Σ11 equivalence relations on
ù, while in the classical case it is known to be incomplete among isomorphism
relations on classes of countable structures, as established by H. Friedman
and Stanley [105]. In [96], the authors also established that the isomorphism
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relation on computable, torsion-free, abelian groups is complete among Σ11
equivalence relations on ù, while in the case of countable structures it is not
known to be complete for isomorphism relations.
Regarding bounding the complexity of the isomorphism relation, Fokina,
Friedman, and Nies obtained the following result.

Theorem 101 ([97]). The computable isomorphism relation on computable
structures from classes including predecessor trees, Boolean algebras, andmetric
spaces is a complete Σ03 equivalence relation under the computable reducibility.

To prove their result, the authors first showed that one-one equivalence
relation of c.e. sets, as an equivalence relation on indices, is Σ03 complete,
and then reduced this equivalence relation to the computable isomorphism on
predecessor trees. Using the technique developed by Hirschfeldt and White
in [175] and Csima, Franklin, and Shore in [65], the result of Theorem 101
can be lifted to hyperarithmetic levels.
It follows from [106] by S. Friedman and Motto Ros that the following
result holds for the bi-embeddability relation on computable structures.

Theorem 102 ([106]). For every Σ11 equivalence relation E on ù, there exists
a hyperarithmetic class K of structures, which is closed under isomorphism,
and such that E is h-equivalent to the bi-embeddability relation on computable
structures fromK .

In fact, the reduction functions have complexity atmost 0′. In [102], Fokina
and S. Friedman showed that the general structure of Σ11 equivalence relations
on hyperarithmetic subsets of ù is rich. Theorem 102 states that the structure
of bi-embeddability relations on hyperarithmetic classes of computable struc-
tures is as complex as the whole structure of Σ11 equivalence relations under
h-reducibility. It would be interesting to answer the following question and
possibly get a refinement of Theorem 102. If E is a Σ11 equivalence relation
on ù, does there exist a hyperarithmetic class K of structures, which is closed
under isomorphism, and such that E is equivalent to the bi-embeddability
relation on computable structures from K via computable functions?
It is not known whether there exists a hyperarithmetic class of computable
structures with Σ11, but not ∆

1
1 isomorphism relation, which is not complete

among all isomorphism relations on hyperarithmetic classes of computable
structures. An affirmative answer to the following question may help solve
this problem. Does there exist a hyperarithmetic class K of computable
structures, which contains a unique structure of noncomputable Scott rank
(up to isomorphism)? If such a class exists, then the isomorphism relation
on the class of computable graphs cannot be reduced to the isomorphism
relation onK . Indeed, there exist nonisomorphic graphs of high (that is, ùCK1
or ùCK1 + 1) Scott rank. They must be mapped to nonisomorphic structures
in K . However, no computable structure of high Scott rank can be mapped
to a computable structure of computable Scott rank under a hyperarithmetic
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reducibility. This question is closely connected with many important open
questions in computable model theory concerning computable structures of
high Scott rank, such as the question of strong computable approximation
(see [140, 35]). It is known that, up to bi-embeddability, this is true in the
following sense. In the class of computable linear orders, the equivalence class
of linear orders bi-embeddable with the rationals is Σ11-complete, but every
computable scattered linear order (that is, one not bi-embeddable with the
rationals) has a hyperarithmetic equivalence class. For more information on
the bi-embeddability relation in the class of countable linear orders see the
paper [257] by Montalbán.
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